Answer:
S is closest to B.
Step-by-step explanation:
Given a directed line segment from point A to B.
Point P divides the line A to B in a ratio 3:4.
Point Q divides the line A to B in a ratio 4:3.
Point R divides the line A to B in a ratio 2:5.
Point S divides the line A to B in a ratio 5:2.
To find:
The point which is closest to the point B.
Solution:
Here, to find the point closest to B we need to find the distances PB, QB, RB and SB.
We can see the sum of ratio 3:4, 4:3, 2:5 and 5:2 is 7.
Let the distance between A and B be 7 units.
Now, the distances can be found easily.




The point which has the minimum distance from point B, will be nearest to B.
We can clearly observe that SB is the minimum distance.
Therefore, <em>S is closest to B</em>.