1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
2 years ago
5

When parking a car in a downtown parking lot, drivers pay according to the number of hours or fraction thereof. The probability

distribution of the number of hours cars are parked has been estimated as followsA. Mean=B. Standard Deviation=The cost of parking is 5 dollars per hour. Calculate the mean and standard deviation of the amount of revenue each car generates.A. Mean=B. Standard DeviationX 1 2 3 4 5 6 7 8P(X) 0.229 0.113 0.114 0.076 0.052 0.027 0.031 0.358
Mathematics
1 answer:
Zigmanuir [339]2 years ago
3 0

Answer:

u = 4.604 , s = 2.903

u' = 23.025 , s' = 6.49

Step-by-step explanation:

Solution:

- We will use the distribution to calculate mean and standard deviation of random variable X.

- Mean = u = E ( X ) = Sum ( X*p(x) )

 u = 1*0.229 + 2*0.113 + 3*0.114 + 4*0.076 + 5*0.052 + 6*0.027 + 7*0.031 + 8*0.358.

 u = 4.604

- Standard deviation s = sqrt ( Var ( X ) = sqrt ( E ( X^2) + [E(X)]^2

 s = sqrt [ 1*0.229 + 4*0.113 + 9*0.114 + 16*0.076 + 25*0.052 + 36*0.027 + 49*0.031 + 64*0.358 - 4.604^2 ]

s = sqrt ( 8.429184 )

s = 2.903          

- We will use properties of E ( X ) and Var ( X ) as follows:

- Mean = u' = E (Rate*X) = Rate*E(X) = $5*u =

               u' = $5*4.605

               u' = 23.025

- standard deviation = s' = sqrt (Var (Rate*X) ) = sqrt(Rate)*sqrt(Var(X)) = sqrt($5)*s =

               s' = sqrt($5)*2.903

               u' = 6.49

You might be interested in
(08.01 MC) PLEASE HELP ITS TIMED EXAM
Ivahew [28]

Answer:

4

Step-by-step explanation:

a^{2}\frac{h}{3}

5 0
2 years ago
Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side
lorasvet [3.4K]

Answer:

Step-by-step explanation:

1.

cot x sec⁴ x = cot x+2 tan x +tan³x

L.H.S = cot x sec⁴x

       =cot x (sec²x)²

       =cot x (1+tan²x)²     [ ∵ sec²x=1+tan²x]

       =  cot x(1+ 2 tan²x +tan⁴x)

       =cot x+ 2 cot x tan²x+cot x tan⁴x

        =cot x +2 tan x + tan³x        [ ∵cot x tan x =\frac{ \textrm{tan x }}{\textrm{tan x}} =1]

       =R.H.S

2.

(sin x)(tan x cos x - cot x cos x)=1-2 cos²x

 L.H.S =(sin x)(tan x cos x - cot x cos x)

          = sin x tan x cos x - sin x cot x cos x

           =\textrm{sin x cos x }\times\frac{\textrm{sin x}}{\textrm{cos x} } - \textrm{sinx}\times\frac{\textrm{cos x}}{\textrm{sin x}}\times \textrm{cos x}

           = sin²x -cos²x

           =1-cos²x-cos²x

           =1-2 cos²x

           =R.H.S

         

3.

1+ sec²x sin²x =sec²x

L.H.S =1+ sec²x sin²x

         =1+\frac{{sin^2x}}{cos^2x}                       [\textrm{sec x}=\frac{1}{\textrm{cos x}}]

         =1+tan²x                        [\frac{\textrm{sin x}}{\textrm{cos x}} = \textrm{tan x}]

         =sec²x

        =R.H.S

4.

\frac{\textrm{sinx}}{\textrm{1-cos x}} +\frac{\textrm{sinx}}{\textrm{1+cos x}} = \textrm{2 csc x}

L.H.S=\frac{\textrm{sinx}}{\textrm{1-cos x}} +\frac{\textrm{sinx}}{\textrm{1+cos x}}

       =\frac{\textrm{sinx(1+cos x)+{\textrm{sinx(1-cos x)}}}}{\textrm{(1-cos x)\textrm{(1+cos x})}}

      =\frac{\textrm{sinx+sin xcos x+{\textrm{sinx-sin xcos x}}}}{{(1-cos ^2x)}}

     =\frac{\textrm{2sin x}}{sin^2 x}

      = 2 csc x

    = R.H.S

5.

-tan²x + sec²x=1

L.H.S=-tan²x + sec²x

        = sec²x-tan²x

        =\frac{1}{cos^2x} -\frac{sin^2x}{cos^2x}

        =\frac{1- sin^2x}{cos^2x}

        =\frac{cos^2x}{cos^2x}

        =1

     

       

8 0
3 years ago
HighTech Inc. randomly tests its employees about company policies. Last year in the 560 random tests conducted, 26 employees fai
Tanzania [10]

Answer:

The 98% confidence interval for the proportion of applicants that fail the test is (0.025, 0.067).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of \pi, and a confidence level of 1-\alpha, we have the following confidence interval of proportions.

\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}

In which

z is the zscore that has a pvalue of 1 - \frac{\alpha}{2}.

For this problem, we have that:

560 random tests conducted, 26 employees failed the test. This means that n = 560, \pi = \frac{26}{560} = 0.046

98% confidence level

So \alpha = 0.02, z is the value of Z that has a pvalue of 1 - \frac{0.02}{2} = 0.99, so Z = 2.33.

The lower limit of this interval is:

\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.046 - 2.33\sqrt{\frac{0.046*0.954}{560}} = 0.025

The upper limit of this interval is:

\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.046 + 2.33\sqrt{\frac{0.046*0.954}{560}} = 0.067

The 98% confidence interval for the proportion of applicants that fail the test is (0.025, 0.067).

5 0
3 years ago
The square of a number is 12 less than 7 times the number
Maru [420]
Im pretty sure its -9.
6 0
3 years ago
Read 2 more answers
For the x-values 1, 2, 3, and so on, the y-values of a function form an
o-na [289]

Answer: exponential decay

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Jordan invests £2400 into his bank account.
    14·1 answer
  • 108/40 in its simplest form
    13·1 answer
  • On Tuesday Lily spent 1/4 hour working on her science fair project.been work three times is mom on his science fair project is L
    7·1 answer
  • What is the Pythagorean Theorem used for? *
    9·2 answers
  • A set of circular cups are placed so that they are touching rim to rim, as close together as possible. It is not possible to fit
    15·1 answer
  • 10. Does the mapping represent a function?
    14·1 answer
  • NEED HELP PLEASE SOLVE. due in 20 mins!
    7·1 answer
  • Bearings And Vectors • The bearing of X from Y is 045 and the bearing of Z from Yis 145, where X, Y and Z are three points in th
    8·1 answer
  • Someone plss help ehgfsbehgbake
    7·2 answers
  • You will need 100 feet of fencing to put all the way around a rectangular garden. The length of the garden is 30 feet. What is t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!