Answer:
Step-by-step explanation:
The number system in most common use today is the Arabic system. It was first developed by the Hindus and was used as early as the 3rd century BC. The introduction of the symbol 0, used to indicate the positional value of digits was very important.
The smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
What is the intermediate value theorem?
Intermediate value theorem is theorem about all possible y-value in between two known y-value.
x-intercepts
-x^2 + x + 2 = 0
x^2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1, x = 2
y intercepts
f(0) = -x^2 + x + 2
f(0) = -0^2 + 0 + 2
f(0) = 2
(Graph attached)
From the graph we know the smallest positive integer value that the intermediate value theorem guarantees a zero exists between 0 and a is 3
For proof, the zero exists when x = 2 and f(3) = -4 < 0 and f(0) = 2 > 0.
<em>Your question is not complete, but most probably your full questions was</em>
<em>Given the polynomial f(x)=− x 2 +x+2 , what is the smallest positive integer a such that the Intermediate Value Theorem guarantees a zero exists between 0 and a ?</em>
Thus, the smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
Learn more about intermediate value theorem here:
brainly.com/question/28048895
#SPJ4
9514 1404 393
Answer:
(x, y) = (4, -4)
Step-by-step explanation:
A graphing calculator makes graphing very easy. The attachment shows the solution to be (x, y) = (4, -4).
__
The equations are in slope-intercept form, so it is convenient to start from the y-intercept and use the slope (rise/run) to find additional points on the line.
The first line can be drawn by staring at (0, -2) and moving down 1 grid unit for each 2 to the right.
The second line can be drawn by starting at (0, 2) and moving down 3 grid units for each 2 to the right.
The point of intersection of the lines, (4, -4), is the solution to the system of equations.