If you mean x^2 then there would be no answer after all, 3^2= 9 and 4^2= 16 so
If you mean 2x then the answer would be 5
Hope I helped?
The cost can be optimized by using a Linear Programming given the linear constraint system
- To minimize the cost, the biologist should use <u>60 samples of Type I</u> bacteria and <u>0 samples of Type II</u> bacteria
Reason:
Let <em>X</em> represent Type 1 bacteria, and let <em>Y</em>, represent Type II bacteria, we have;
The constraints are;
4·X + 3·Y ≥ 240
20 ≤ X ≤ 60
Y ≤ 70
P = 5·X + 7·Y
Solving the inequality gives;
4·X + 3·Y ≥ 240
(Equation for the inequality graphs)
The boundary of the feasible region are;
(20, 70)
(20, 53.
)
(60, 0)
(60, 70)
The cost are ;
![\begin{array}{|c|c|c|}X&Y&P= 5\times X + 7 \times Y\\20&70&590\\20&53.\overline 3&473.\overline 3\\60&0&300\\60&70&790\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7Cc%7C%7DX%26Y%26P%3D%205%5Ctimes%20X%20%2B%207%20%5Ctimes%20Y%5C%5C20%2670%26590%5C%5C20%2653.%5Coverline%203%26473.%5Coverline%203%5C%5C60%260%26300%5C%5C60%2670%26790%5Cend%7Barray%7D%5Cright%5D)
- Therefore, the minimum cost of $300 is obtained by using <u>60 samples of Type I</u> and <u>0 samples of Type II</u>
Learn more here:
brainly.com/question/17646656
Answer:
g(x) is shifted 6 units to the left
Step-by-step explanation:
Lets try to simplify g(x) since has a few extra terms:
g(x)= 3x+12-6=3x+6
Now it is easier to compare the two functions.
We can tell that they both have the same slope, both differs on a extra term
This term tell us that the g(x) is shifted to the left (it is positive 6)
Another approach to the solution is to plot the two functions together by obtaining the crossing points with the 'y' axis and with the 'x' axis
the result is shown in the attached picture
Differentiate to find time that gradient=0
45-9.8t=0
45=9.8t
t =4.59 secs
put this value into original equation to get 103.31
Answer:
x = 3 && y = - 1
Step-by-step explanation:
Just solving the two equations
the first equation
y = 4/3 x +3
y - 4/3 x = 3 ..............................................(1)
the second equation
y = -2/3x -3
y + 2/3 x = -3 ..............................................(2)
by substracting 2 from 1
-4/3x - 2/3x = -6
divide by -1
4/3x +2/3x = 6
6/3x = 6
2x = 6
x= 3
then subsititute by value x in any of given eqautions