1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergiy2304 [10]
3 years ago
14

Which expressions are equivalent to -56z+28? Choose 2 answers:

Mathematics
2 answers:
nata0808 [166]3 years ago
4 0

Answer:

(-1.4z+0.7) x40 and (8z-4)(-7)

Step-by-step explanation:

Let's use the distributive property to expand each expression and see if it is equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #22 / 7

Expression: \dfrac{1}{2}\cdot(-28z+14)  

2

1

​  

⋅(−28z+14)start fraction, 1, divided by, 2, end fraction, dot, left parenthesis, minus, 28, z, plus, 14, right parenthesis

Let's distribute the \blueD{\dfrac{1}{2}}  

2

1

​  

start color #11accd, start fraction, 1, divided by, 2, end fraction, end color #11accd to each of the terms inside of the parentheses.

\begin{aligned} \blueD{\dfrac{1}{2}}\cdot(-28z+14)&\stackrel{?}=-56z+28\\\\ \left(\blueD{\dfrac{1}{2}}\times-28z\right)+\left(\blueD{\dfrac{1}{2}}\times14\right)&\stackrel{?}=-56z+28\\\\ -14z+7&\neq -56z+28\end{aligned}  

2

1

​  

⋅(−28z+14)

(  

2

1

​  

×−28z)+(  

2

1

​  

×14)

−14z+7

​  

 

=

?

−56z+28

=

?

−56z+28



​  

=−56z+28

​  

 

No, \dfrac{1}{2}\cdot(-28z+14)  

2

1

​  

⋅(−28z+14)start fraction, 1, divided by, 2, end fraction, dot, left parenthesis, minus, 28, z, plus, 14, right parenthesis is not equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #33 / 7

Expression: (-1.4z+0.7)\times40(−1.4z+0.7)×40left parenthesis, minus, 1, point, 4, z, plus, 0, point, 7, right parenthesis, times, 40

Let's distribute the \blueD{40}40start color #11accd, 40, end color #11accd to each of the terms inside of the parentheses.

\begin{aligned} (-1.4z+0.7)\times\blueD{40}&\stackrel{?}=-56z+28\\\\ \blueD{40}(-1.4z+0.7)&\stackrel{?}=-56z+28\\\\ (\blueD{40}\times-1.4z)+(\blueD{40}\times0.7)&\stackrel{?}=-56z+28\\\\ -56z+28&\stackrel{\checkmark}{=} -56z+28\end{aligned}  

(−1.4z+0.7)×40

40(−1.4z+0.7)

(40×−1.4z)+(40×0.7)

−56z+28

​  

 

=

?

−56z+28

=

?

−56z+28

=

?

−56z+28

=

✓

−56z+28

​  

 

Yes, (-1.4z+0.7)\times40(−1.4z+0.7)×40left parenthesis, minus, 1, point, 4, z, plus, 0, point, 7, right parenthesis, times, 40 is equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #44 / 7

Expression: (14-7z)\cdot(-4)(14−7z)⋅(−4)left parenthesis, 14, minus, 7, z, right parenthesis, dot, left parenthesis, minus, 4, right parenthesis

Let's distribute the \blueD{-4}−4start color #11accd, minus, 4, end color #11accd to each of the terms inside of the parentheses.

\begin{aligned} (14-7z)\cdot(\blueD{-4})&\stackrel{?}=-56z+28\\\\ \blueD{-4}(14-7z)&\stackrel{?}=-56z+28\\\\ (\blueD{-4}\times14)+(\blueD{-4}\times-7z)&\stackrel{?}=-56z+28\\\\ -56+28z&\neq -56z+28\end{aligned}  

(14−7z)⋅(−4)

−4(14−7z)

(−4×14)+(−4×−7z)

−56+28z

​  

 

=

?

−56z+28

=

?

−56z+28

=

?

−56z+28



​  

=−56z+28

​  

 

No, (14-7z)\cdot(-4)(14−7z)⋅(−4)left parenthesis, 14, minus, 7, z, right parenthesis, dot, left parenthesis, minus, 4, right parenthesis is not equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #55 / 7

Expression: (8z-4)(-7)(8z−4)(−7)left parenthesis, 8, z, minus, 4, right parenthesis, left parenthesis, minus, 7, right parenthesis

Let's distribute the \blueD{-7}−7start color #11accd, minus, 7, end color #11accd to each of the terms inside of the parentheses.

\begin{aligned} (8z-4)(\blueD{-7})&\stackrel{?}=-56z+28\\\\ \blueD{-7}(8z-4)&\stackrel{?}=-56z+28\\\\ (\blueD{-7}\times8z)+(\blueD{-7}\times-4)&\stackrel{?}=-56z+28\\\\ -56z+28&\stackrel{\checkmark}{=} -56z+28\end{aligned}  

(8z−4)(−7)

−7(8z−4)

(−7×8z)+(−7×−4)

−56z+28

​  

 

=

?

−56z+28

=

?

−56z+28

=

?

−56z+28

=

✓

−56z+28

​  

 

Yes, (8z-4)(-7)(8z−4)(−7)left parenthesis, 8, z, minus, 4, right parenthesis, left parenthesis, minus, 7, right parenthesis is equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #66 / 7

Expression: -2(-28z-14)−2(−28z−14)minus, 2, left parenthesis, minus, 28, z, minus, 14, right parenthesis

Let's distribute the \blueD{-2}−2start color #11accd, minus, 2, end color #11accd to each of the terms inside of the parentheses.

\begin{aligned} \blueD{-2}(-28z-14)&\stackrel{?}=-56z+28\\\\ (\blueD{-2}\times-28z)+(\blueD{-2}\times-14)&\stackrel{?}=-56z+28\\\\ 56z+28&\neq -56z+28\end{aligned}  

−2(−28z−14)

(−2×−28z)+(−2×−14)

56z+28

​  

 

=

?

−56z+28

=

?

−56z+28



​  

=−56z+28

​  

 

No, -2(-28z-14)−2(−28z−14)minus, 2, left parenthesis, minus, 28, z, minus, 14, right parenthesis is not equivalent to -56z+28−56z+28minus, 56, z, plus, 28.

Hint #77 / 7

The following expressions are equivalent to -56z+28−56z+28minus, 56, z, plus, 28:

(-1.4z+0.7)\times40(−1.4z+0.7)×40left parenthesis, minus, 1, point, 4, z, plus, 0, point, 7, right parenthesis, times, 40

(8z-4)(-7)(8z−4)(−7)left parenthesis, 8, z, minus, 4, right parenthesis, left parenthesis, minus, 7, right parenthesis

gavmur [86]3 years ago
3 0

Answer:

(-1.4z+0.7) x 40 and (8z-4)(-7)

Step-by-step explanation:

You might be interested in
What is the following sum 4(^5√x^2y)+3(^5√x^2y)
satela [25.4K]
I think it should be B but I’m probably wrong so risk it if you want sorry
8 0
3 years ago
Read 2 more answers
Hai came someone help I too lazy to do it...
baherus [9]

Answer: 4 Cups

I think in order to solve this, you would need to add up the fractions that they used. So it would be,

\frac{1}{4}+\frac{1}{4}+\frac{3}{8}+\frac{3}{8}+\frac{5}{8}+\frac{5}{8}+\frac{5}{8}+\frac{7}{8}   Transform the Expressions

\frac{1+1}{4} +\frac{3+3+5+5+5+7}{8}    Calculate the sum

\frac{2}{4} +\frac{28}{8}    Reduce

\frac{1}{2}+\frac{7}{2}   Transform the Expression

\frac{1+7}{2}   Calculate

\frac{8}{2}  Reduce the Fraction

4

Please mark brainliest if this helped you :)

3 0
2 years ago
Find x and y, given that KL and line MN are parallel. Show all work
Setler [38]
\dfrac{|MN|}{|NJ|}=\dfrac{|KL|}{|LJ|}\\\\\dfrac{22}{12+8}=\dfrac{y}{8}\\\\\dfrac{22}{20}=\dfrac{y}{8}\ \ \ |cross\ multiply\\\\20y=22\cdot8\\\\20y=176\ \ \ |:20\\\\\boxed{y=8.8}

\dfrac{|MK|}{|KJ|}=\dfrac{|NL|}{|LJ|}\\\\\dfrac{x-2}{5}=\dfrac{12}{8}\ \ \ \ |cross\ multiply\\\\8(x-2)=5\cdot12\\\\8x-16=60\ \ \ |+16\\\\8x=76\ \ \ |:8\\\\\boxed{x=9.5}
4 0
2 years ago
Read 2 more answers
What is f(-x), if f(x)=2|x|+3x
a_sh-v [17]
F(-x) = 2/-x/ + 3(-x) = 2/x/ - 3x;
6 0
3 years ago
What ate the domain and range of f(x)(1/6)x+2?
never [62]

Answer:

Domain : all real numbers

Range: All numbers greater than 2

Step-by-step explanation:

The shark. (Haha, I'm sorry.)

There are no restrictions on the x. X can be any real number.

The range, however, does have restrictions. The range has to be a number greater than 0.

Why?

Because any number that you put in for x won't make the range less than 2. If you put in zero for x, the range is 2.

7 0
3 years ago
Other questions:
  • Jake bought 4.08 pounds of apples he knows that 1.19 pounds are gala apples and the rest are cameo apples how many pounds of cam
    12·1 answer
  • What is the product of 4x15x25
    8·2 answers
  • 17297828288+516-5166617
    14·1 answer
  • Determine if the proportion is true
    6·2 answers
  • 2/3 of a class are girls
    13·1 answer
  • Write an equation of the line that passes through (1, 2) and is parallel to the line y = -52 +4.
    7·1 answer
  • GIVING BRAINLEST FOR CORRECT ANSWER <br><br> (On select it says <br> "IS" or "Is Not")
    5·1 answer
  • 2/3(-7)+2/3(-5) solve using the distributive property
    15·1 answer
  • Write an equation of the line that passes through 9,2 and is parallel to the line y=5/3x+9
    5·1 answer
  • Sketch a graph of the following rational function: h(x)= x²-1/ x³-2x²-x+2​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!