Hydrogen gas is harmless to your feet so since you don’t need protection against it that seems the best answer.
Answer:
The velocity of the frozen rock at
is -14.711 meters per second.
Explanation:
The frozen rock experiments a free fall, which is a type of uniform accelerated motion due to gravity and air viscosity and earth's rotation effect are neglected. In this case, we need to find the final velocity (
), measured in meters per second, of the frozen rock at given instant and whose kinematic formula is:
(Eq. 1)
Where:
- Initial velocity, measured in meters per second.
- Gravity acceleration, measured in meters per square second.
- Time, measured in seconds.
If we get that
,
and
, then final velocity is:


The velocity of the frozen rock at
is -14.711 meters per second.
The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
We can use the equation for Newton's Law of Gravitation
Fg = (Gm₁m₂)/r²
Where gravitational constant = G = 6.674 x 10⁻¹¹ N · m²/kg²
mass m₁ = 0.145 kg
mass m₂ = 6.8 kg
distance between centers of masses = r = 0.5 m
Substitute these values into...
Fg = (Gm₁m₂)/r²
Fg = ((6.674 x 10⁻¹¹)(0.145)(6.8)) / (0.5)²
Fg = 2.63 x 10⁻¹⁰ N
Therefore, your answer should be <span>2.6 × 10–10</span>
Answer:
The scientific method is a method of research with defined steps that include experiments and careful observation. One of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A hypothesis is a suggested explanation for an event, which can be tested.