Answer:
The acceleration at lowest point is 19.62 m/s^2
Explanation:
Conservation of energy is an concept in which it is stated that the energy of an isolated object remains the same. Energy changes from one form to another.
Lets Assume
Constant of string is K
By using the conservation of energy we will have the following equation
1/2 x 80^2 x K = m x 9.81 x 120
3200 K = 1177.2 m
K = 1177.2 m / 3200
K = 0.368 m
At the lowest point we will have
a = ( K x X - m x g ) / m
a = ( 0.368 m x 80 - m x 9.81 ) / m
a = 19.62 m / s^2
So, the acceleration at lowest point is 19.62 m/s^2
Answer: 9496200 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the moving plane since it moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 1900kg
g = 9.8m/s^2
h = 510 metres (units of height is metres)
Thus, GPE = 1900kg x 9.8m/s^2 x 510m
GPE = 9496200 joules
Thus, the gravitational potential energy of the airplane is 9496200 joules
<u><em>Answer</em></u>
A) 1,347.5 Joules
B) 22.49 m/s
<u><em>Explanation</em></u>
<u>Part A</u>
The work done by the gravity is known as potential energy.
It is given by;
P.E = mgh
Where m is mass, g is acceleration due to gravity and h is the vertical height.
P.E = 5.5 × 9.8 ×25
= 1,347.5 Joules.
<u>Part B</u>
Using the Newton's third Law of motion,
V² = U² +2as
Where v is final velocity, u is the initial velocity, and s is the displacement of the stone.
V² = 4² + (2×9.8×25)
= 16 + 490
= 506
V = √506
= 22.49 m/s