Ionic bond is a type of chemical bond that refers to the bonding of <span>oppositely charged ions (anions and cations) because of attraction and the </span>transfer of valence electron(s) between atoms. Cation is the metal that loses electrons and become a positively charged cation, and anions are
the nonmetal that accepts those electrons to become a negatively charged
anion.
According this explanation, an ionic bond is:
B. the force that holds the valence electrons to the atom
Answer:
Sign in
Contents
Home
Bookshelves
Analytical Chemistry
Analytical Chemistry 2.1 (Harvey)
2: Basic Tools of Analytical Chemistry
Expand/collapse global location
2.5: Preparing Solutions
Last updatedAug 10, 2020
2.4: Basic Equipment
2.6: Spreadsheets and Computational Software
picture_as_pdf
Readability
Cite this page
Donate

Contributed by David Harvey
Professor (Chemistry and Biochemistry) at DePauw University
Preparing a solution of known concentration is perhaps the most common activity in any analytical lab. The method for measuring out the solute and the solvent depend on the desired concentration and how exact the solution’s concentration needs to be known. Pipets and volumetric flasks are used when we need to know a solution’s exact concentration; graduated cylinders, beakers, and/or reagent bottles suffice when a concentrations need only be approximate. Two methods for preparing solutions are described in this section.
Answer:
a. the 5-gram piece of ice will melt at a lower temperature and it will take less time to melt
Explanation:
When the reaction in a calorimeter causes the temperature of the surrounding water to decrease, this means that the energy is absorbed during the course of reaction from water. The reaction is endothermic as it proceeded via the absorption of energy from the surrounding water present in the calorimeter. So, the energy(enthalpy) of products will be higher than the energy(enthalpy) of reactants.
Answer:
A mixture is composed of one or more pure substances in varying composition. There are two types of mixtures: heterogeneous and homogeneous. Heterogeneous mixtures have visually distinguishable components, while homogeneous mixtures appear uniform throughout.
Explanation:
can i have a brainlyest please, if that ia o with you