The answer would be 425.599 because 1 ATM is 760 mmHg.
According to Diagram B, look at the 1600 elevation until you see the descending air line touches it. Then look down at the temperature at the bottom of the graph. It is between 0 degrees to 5 degrees.
The only number that is between that range is 2 degrees C.
Its a formula relating to specific heat capacity
Δθ refers to the change in temperature
Q refers to the energy neededto raise the temperature of an object by the change in temperature
m stands for the mass of tje object
c is the specific heat capacity which is the amount of energy needed to heat up an object per unit mass
Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
First, find out how many grams are in one mole of CO2(the two oxygen atoms means you need to multiply oxygen’s amu by 2,then add whatever carbon’s amu is to that). Then divide 26 grams by that number and that will be your moles. There are only two significant figures, so round your answer correctly.