Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
The mass of a 0.513 mol of Al2O3 is 52.33g.
HOW TO CALCULATE MASS:
The mass of a substance can be calculated by multiplying the molar mass of the substance by its number of moles. That is;
mass of Al2O3 = no. of moles of Al2O3 × molar mass of Al2O3
According to this question, there are 0.513 moles of Al2O3.
Mass of Al2O3 = 0.513 × 102
Mass of Al2O3 = 52.33g
Therefore, the mass of a 0.513 mol of Al2O3 is 52.33g.
Learn more about mass calculations at: brainly.com/question/8101390?referrer=searchResults
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
Answer:
70.0°C
Explanation:
We are given;
- Amount of heat generated by propane as 104.6 kJ or 104600 Joules
- Mass of water is 500 g
- Initial temperature as 20.0 ° C
We are required to determine the final temperature of water;
Taking the initial temperature is x°C
We know that the specific heat of water is 4.18 J/g°C
Quantity of heat = Mass × specific heat × change in temperature
In this case;
Change in temp =(x-20)° C
Therefore;
104600 J = 500 g × 4.18 J/g°C × (x-20)
104600 J = 2090x -41800
146400 = 2090 x
x = 70.0479
=70.0 °C
Thus, the final temperature of water is 70.0°C
Answer:
Corrosion is the process of deterioration of materials as a result of chemical, electrochemical or other reactions. Rusting is a part of corrosion and is a chemical process which results in the formation of red or orange coating on the surface of metals. ... Rust or rusting can affect only iron and its alloys.
Explanation: