There are various reasons why a measurement tool cannot be accurate. One of them is thermal contraction and expansion varies according to seasons.
<h3>What are Accuracy and Precision?</h3>
There are two ways to assess observational error: accuracy and precision. Precision measures how closely two measurements are to one another, whereas accuracy measures how close a group of measurements is to its actual value. In other words, precision is a measure of statistical variability and a description of random errors.
We can say that a tool can be precise, but it cannot be accurate. There are various reasons behind that, some of them are :
- It may not be calibrated properly. If there are no reliable standards to use for calibration, this may occur.
- Perhaps it strayed. This is why electronic scales include a tare function—they are terrible in this area.
- Perhaps the measurements are not linear. Our calipers might have been quite precise at the 2-inch standard, where they were calibrated, but inaccurate at other dimensions.
- Temperature is one environmental component that the instrument might be sensitive to. These effects might be compensated for, but the compensation might not be ideal. This issue affects both dissolved solids meters and picometers.
These are some of the reasons due to which measurement tool cannot be accurate.
To get more information about Accuracy and Precision :
brainly.com/question/15276983
#SPJ1
Answer:
specific heat
Explanation:
Specific heat is the amount of heat required to change the temperature of 1 gram of a substance by 1°C, and it is related to the chemical composition of the substance
The bigger the mass of an astronomical object the bigger the depression it causes in the space-time fabric. Any other astronomical object that gets closer to this depression begins to fall into the depression and hence accelerates closer to the astronomical object causing the depression. This is how gravity is felt.
Answer:
:)
Explanation:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. If one of the masses is doubled, the force of gravity between the objects is doubled. increases, the force of gravity decreases.