Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer:
375 m.
Explanation:
From the question,
Work done by the frictional force = Kinetic energy of the object
F×d = 1/2m(v²-u²)..................... Equation 1
Where F = Force of friction, d = distance it slide before coming to rest, m = mass of the object, u = initial speed of the object, v = final speed of the object.
Make d the subject of the equation.
d = 1/2m(v²-u²)/F.................. Equation 2
Given: m = 60.0 kg, v = 0 m/s(coming to rest), u = 25 m/s, F = -50 N.
Note: If is negative because it tends to oppose the motion of the object.
Substitute into equation 2
d = 1/2(60)(0²-25²)/-50
d = 30(-625)/-50
d = -18750/-50
d = 375 m.
Hence the it will slide before coming to rest = 375 m