1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
14

What happens to a shopping cart if you get it rolling and then release it?

Physics
1 answer:
Anit [1.1K]3 years ago
7 0

Answer:

It will slowly come to a stop as long as it is moving on a flat surface

Explanation:

If the cart is moving on a flat surface, it will slowly come to a stop due to the friction forces acting on its wheels.

If the cart is on an inclined surface, it may gain acceleration enough to overcome any friction force, and thus continue with an accelerated motion.

You might be interested in
The slider of mass m is released from rest in position A and slides without friction along the vertical-plane guide shown. Deter
Anuta_ua [19.1K]

The value of normal force as the slider passes point B is

  • 6 mg

The value of h when the normal force is zero

  • 3R/2

<h3>How to solve for the normal force</h3>

The normal force is calculated using the work energy principle which is applied as below

K₁ + U₁ = K₂

k represents kinetic energy

U represents potential energy

the subscripts 1,2 , and 3 = a, b, and c

for 1 to 2

K₁ + W₁ = K₂

0 + mg(h + R) = 0.5mv²₂

g(h + R) = 0.5v²₂

v²₂ = 2g(1.5R + R)

v²₂ = 2g(2.5R)

v²₂ = 5gR

Using summation of forces at B

Normal force, N  = ma + mg

N = m(a + g)

N = m(v²₂/R + g)

N = m(5gR/R + g)

N = 6mg

for 1 to 3

K₁ + W₁ = K₃ + W₃

0 + mgh = 0.5mv²₃ + mgR

gh = 0.5v²₃ + gR

0.5v²₃ = gh - gR

v²₃ = 2g(h - R)

at C

for normal force to be zero

ma = mg

v²₃/R = g

v²₃ = gR

and v²₃ = 2g(h - R)

gR = 2gh - 2gR

gR + 2gR = 2gh

3gR = 2gh

3R/2 = h

Learn more about normal force at:

brainly.com/question/20432136

#SPJ1

8 0
10 months ago
If the Earth were compressed in such a way that its mass remained the same, but the distance around the equator were just one-ha
vovikov84 [41]
If the distance around the equator is reduced by half, then the radius is also reduced by half.

Since the acceleration due to gravity is proportional to 1/(radius²),
the acceleration changes by a factor of 1/(1/2)² = 1/(1/4) = <em>4 </em>.

The acceleration due to gravity ... and also the weight of everything on Earth ...
becomes <em>4 times what it is now</em>.
6 0
3 years ago
Read 2 more answers
A train travels due north in a straight line with a constant speed of 100 m/s. Another train leaves a station 2,881 m away trave
damaskus [11]

Answer:

The trains will collide at a distance 1660 m from the station

Explanation:

Let the train traveling due north with a constant speed of 100 m/s be Train A.

Let the train traveling due south with a constant speed of 136 m/s be Train B.

From the question, Train B leaves a station 2,881 m away (that is 2,881 m away from Train A position).

Hence, the two trains would have traveled a total distance of 2,881 m by the time they collide.

∴ If train A has covered a distance x m by the time of collision, then train B would have traveled (2881 - x) m.

Also,

At the position where the trains will collide, the two trains must have traveled for equal time, t.

That is, At the point of collision,

t_{A} = t_{B}

t_{A} is the time spent by train A

t_{B} is the time spent by train B

From,

Velocity = \frac{Distance }{Time }\\

Time = \frac{Distance}{Velocity}

Since the time spent by the two trains is equal,

Then,

\frac{Distance_{A} }{Velocity_{A} }  = \frac{Distance_{B} }{Velocity_{B} }

{Distance_{A} = x m

{Distance_{B} = 2881 - x m

{Velocity_{A} = 100 m/s

{Velocity_{B} = 136 m/s

Hence,

\frac{x}{100} = \frac{2881 - x}{136}

136(x) = 100(2881 - x)\\136x = 288100 - 100x\\136x + 100x = 288100\\236x = 288100\\x = \frac{288100}{236} \\x = 1220.76m\\

x≅ 1,221 m

This is the distance covered by train A by the time of collision.

Hence, Train B would have covered (2881 - 1221)m = 1660 m

Train B would have covered 1660 m by the time of collision

Since it is train B that leaves a station,

∴ The trains will collide at a distance 1660 m from the station.

7 0
3 years ago
How much energy was absorbed
ser-zykov [4K]
. we need like a picture you something what’re you trying to ask
6 0
2 years ago
1. Viruses are unique among infectious agents because they are
yuradex [85]
1,) C

2,) C

Hope this helps
4 0
3 years ago
Other questions:
  • If you hit another object with your vehicle, your _______ will be slowed or stopped by the force of impact caused by that object
    8·2 answers
  • Find the mass if the force is 18 N and the acceleration is 2 m/s2.
    5·1 answer
  • What is the smallest particle that can completely represent water?
    15·2 answers
  • What kind of frequency does long shift waves have?
    5·1 answer
  • 2. What is the feather's initial velocity (before it is dropped) in m/s?
    13·1 answer
  • 1. What is true about all forces?a. They are unbalanced b. They involve more than one object c. They cause objects to moved. d.
    6·1 answer
  • when a tuning fork vibrates over an open pipe and the air in the pipe starts to vibrate, the vibrations in the tube are caused b
    7·1 answer
  • Which scientist stated that all cells arise from preexisting cells?
    6·2 answers
  • The density of a glass is 2.5 g/cm3. if the glass breaks, what is the density of the smaller pieces​
    10·1 answer
  • If the mass of the sun is 1x, at least one planet will fall into the habitable zone if I place a planet in orbits___, ____, ____
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!