Answer: (3) molecules have different molecular structures.
Explanation:
1) Oxygen (O₂) and ozone (O₃) are allotropes of each other.
2) Allotropes are different structural forms of a same element with different structures and properties, when they are in the same state: solid, liquid, gas.
3) The bonds is what define the structure and properties of the substances, so since O₂ has only two bonds and O₃ has three bonds, the properties and behaviors of the element are different.
4) Other example of allotropes are graphite and diamond: two different forms of carbon. Both, graphite and diamond are formed only by carbon atoms, but they are bonded differently so, as you know, diamond and graphite have different properties: graphite is very soft while diamond is one of the hardest known substances.
By looking at http://wavecast.com/tides/ it shows that today in San Diego at 2:22 PM the tide as -1.53 feet low. But knowing this and that the tides are controlled by the moon I am unsure on how to answer your question.
The main class of high-temperature superconductors are in the class of copper oxides (only some particular copper oxides) especially the Rare-earth barium copper oxides (REBCOs) such as Yttrium barium copper oxide (YBCO).
<h3>What superconducting material works with the highest temperature?</h3>
As of 2020, the material with the highest accepted superconducting temperature is an extremely pressurized carbonaceous sulfur hydride with a critical transition temperature of +15°C at 267 GPa.
<h3>How do high-temperature superconductors work?</h3>
High-temperature superconductivity, the ability of certain materials to conduct electricity with zero electrical resistance at temperatures above the boiling point of liquid nitrogen, was unexpectedly discovered in copper oxide (cuprate) materials in 1987.
Learn more about high temperature superconductors here:
<h3>
brainly.com/question/1657823</h3><h3 /><h3>#SPJ4</h3>