1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
14

Evaluate the numerical expression. 2.5(−4.4 − 3.5) A) −14.5 B) −19.75 C) −2.25 D) 19.75

Mathematics
2 answers:
alisha [4.7K]3 years ago
4 0
2.5×(-7.9)
=-19.75
.............
jeka943 years ago
4 0
I believe its B -19.75...
You might be interested in
Write an expression meaning 4 less than 5 times a number
Rudiy27

Answer:

Expression: 5 x n - 4

4 0
3 years ago
Read 2 more answers
Answer for brainliest!!! :> Three hens can lay 3 eggs in 3 days. How many hens would lay 3 eggs in 9 days?
marta [7]

It would still be the same 3 hens in 9 days.

6 0
2 years ago
Read 2 more answers
How to cross multiple 3/5 by 10
postnew [5]

3/5 by 10  = 6

\frac{3}{5} *10 = 6

6 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Solve for m. –8m = 3 − 9m m =
Oksanka [162]

Answer:

m=3

Step-by-step explanation:

–8m = 3 − 9m

-8+9m = 3

m = 3

8 0
2 years ago
Read 2 more answers
Other questions:
  • Jen wants to buy four books: for $10.00, for
    10·1 answer
  • Holly, Chris and Tony each collect action figures. Chris has twice as many action figures as Holly. Holly has 3 fewer action fig
    11·1 answer
  • What is 6 divided by 324 please help me ASAP!!!
    15·2 answers
  • What is 8 divided by 4
    9·2 answers
  • Combine the like terms to create an equivalent expression.<br> 5 + 9t + 3
    13·1 answer
  • 10y + 12 - 7y - 8 - 3y = ?
    8·1 answer
  • Write the equation in slope-intercept form through the point (-5, 3) and is perpendicular to the line y = 2x - 3 and graph​
    8·1 answer
  • Are the ratios 11:9 and 2:1 equivalent?<br> yes or no
    9·2 answers
  • Solve for x ~<br><img src="https://tex.z-dn.net/?f=4x%20-%2016%20%3D%2064" id="TexFormula1" title="4x - 16 = 64" alt="4x - 16 =
    8·2 answers
  • Please help, thank you!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!