1) y= - 2x² + 8x. It's a parabola open downward (a<0)
2) x - 2.23.y + 10.34 = 0 . Re-write it : y = (x/2.23) + (10.34/2.23), a linear equation.
To find the intersections between 1) & 2), let 1) = 2)
-2x² + 8x = (x/2.23) + (10.34/2.23)
-2x² + 8x - (x/2.23) - (10.34/2.23) =0 ; solve this quadratic for x values:
x' (that is A) = 0.772 & x" (that is B) = 3. (these are the values of x-intercept (parabola with line). To calculate the y-values, plug x' & x' in the equation:
for x' = 0.772, y = 0.34 → B(0.772 , 0.34)
for x" = 3, y = 0.016 → A(3 , 0.O16)
So B IS AT 0.34 Unit from the ground
Answer:
Step-by-step explanation:
Equivalent expressions are expressions that are the same,even though they might look different. If you plug in the same variable value into equivalent expressions they will each give you the same value when you simplify.
Let

Differentiating twice gives


When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.
Substitute these into the given differential equation:


Then the coefficients in the power series solution are governed by the recurrence relation,

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.
• If n is even, then n = 2k for some integer k ≥ 0. Then




It should be easy enough to see that

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then




so that

So, the overall series solution is


Answer: 
Step-by-step explanation:
Given : The probability of a correct classification of any part is : p=0.96
sample size : n= 3
The formula to find the mean and variance for binomial distribution is given by :-

Let the random variable X denote the number of parts that are correctly classified.
The, for the given situation, we have

Hence, the mean and variance of X are 2.88 and 0.115 respectively.
Answer:
17 with the remainder of 25
Step-by-step explanation: