Answer:
c (0,-4)
Step-by-step explanation:
-5x+y = -4
4x - 4y =16
Solve the first equation for y since we are using substitution.
-5x+y = -4
Add 5x to each side
-5x+5x+y = -4+5x
y = 5x-4
Substitute this equation y = 5x-4 into the second equation.
4x -4(5x-4) = 16
Distribute the -4
4x - 4(5x) -4(-4) = 16
4x-20x +16 = 16
Combine like terms
-16x +16 =16
Subtract 16 from each side
-16x+16-16 = 16-16
-16x =0
Divide by -16
x=0
But we still need to find y
y = 5x-4
y = 5(0) -4
y = -4
The answerrr is 18 for thisvprblme
Answer:
infinite solutions
Step-by-step explanation:
Multiply the first equation by 2
2(3x-5y) = 2*15
6x - 10y = 30
This is the same as the second equation
They are the same line
This means there are infinite solutions
Answer:
Let the adjacent angles of the rhombus be 2x and 3x. We know that the sum of the measures of the adjacent angles is equal to 180°. AD = DC = 3 × 36° = 108°. Hence , the angles of the rhombus are 72° , 108° , 72° and 108°.
Step-by-step explanation:
<span>B(n) = A(1 + i)^n - (P/i)[(1 + i)^n - 1]
where B is the balance after n payments are made, i is the monthly interest rate, P is the monthly payment and A is the initial amount of loan.
We require B(n) = 0...i.e. balance of 0 after n months.
so, 0 = A(1 + i)^n - (P/i)[(1 + i)^n - 1]
Then, with some algebraic juggling we get:
n = -[log(1 - (Ai/P)]/log(1 + i)
Now, payment is at the beginning of the month, so A = $754.43 - $150 => $604.43
Also, i = (13.6/100)/12 => 0.136/12 per month
i.e. n = -[log(1 - (604.43)(0.136/12)/150)]/log(1 + 0.136/12)
so, n = 4.15 months...i.e. 4 payments + remainder
b) Now we have A = $754.43 - $300 = $454.43 so,
n = -[log(1 - (454.43)(0.136/12)/300)]/log(1 + 0.136/12)
so, n = 1.54 months...i.e. 1 payment + remainder
</span>