Answer:
multiply the left side of the constant vector by the inverse matrix
Step-by-step explanation:
The matrix equation ...
AX = B
is solved by left-multiplying by the inverse of A:
A⁻¹AX = A⁻¹B
IX = A⁻¹B . . . . . the result of multiplying A⁻¹A is the identity matrix
X = A⁻¹B . . . . . B needs to be multiplied by the inverse matrix
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}-4&1\\3&2\end{array}\right]^{-1}\left[\begin{array}{c}9&7\end{array}\right]=\dfrac{1}{11}\left[\begin{array}{cc}-2&1\\3&4\end{array}\right]\left[\begin{array}{c}9&7\end{array}\right]=\left[\begin{array}{c}-1&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-4%261%5C%5C3%262%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B1%7D%7B11%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%261%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-1%265%5Cend%7Barray%7D%5Cright%5D)
You know that the slope, m=5. You have a point (6,7) as (x,y). The slope-intercept form is y=mx+b. Plug in the number for x,y, and m, and then you would be able to find b using the slope-intercept form. Then rewrite the equation as y=5x+b, which you just found b.
(Here's the first step. 7=5(-6)+b). Find b, and then write the slope-intercept form as y=5x+b.
Answer: 140 step by step
Step-by-step explanation:
Answer:
x=0/y=-2
y=0/x=-3
....∞
Step-by-step explanation:
Answer:
y=x+12
Step-by-step explanation:
Well the slope is -4/-4 =1
We plug it into the formula, y=mx+b, but m=1
So it is y=1x+b
We know the points, so we plug y and x in which is:
-4=-4*4+b
-4=-16+b
b=12
So the point slope form of that is y=x+12