Answer:
n = 98, that is, she scored at the 98th percentile.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
She scored 38, so 
Test scores are normally distributed with a mean of 25 and a standard deviation of 6.4.
This means that 
Find the percentile:
We have to find the pvalue of Z. So



has a pvalue of 0.98(rounding to two decimal places).
So n = 98, that is, she scored at the 98th percentile.
To solve for the width simply multiply the two numbers:
width of sidewalk = 12 * (3 7/8)
Where 3 7/8 = 31/8
so calculating,
width of sidewalk = 12 * (31 / 8)
<span>width of sidewalk = 46.5 inches</span>
The probability of an event is expressed as

Given:

The probability of drwing two blue balls one after the other is expressed as

For the first draw:

For the second draw, we have only 1 blue ball left out of a total of 6 balls (since a blue ball with drawn earlier).
Thus,

The probability of drawing two blue balls one after the other is evaluted as

The probablity that none of the balls drawn is blue is evaluted as

Hence, the probablity that none of the balls drawn is blue is evaluted as
Answer:
<h2>b = 15°</h2>
Step-by-step explanation:
If Pq = RQ then ΔPQR is the isosceles triangle. The angles QPR and PRQ have the same measures.
We know: The sum of the measures of the angeles in the triangle is equal 180°. Therefore we have the equation:
m∠QPR + m∠PRQ + m∠RQP = 180°
We have
m∠QPR = m∠PRQ and m∠RQP = 60°
Therefore
2(m∠QPR) + 60° = 180° <em>subtract 60° from both sides</em>
2(m∠QPR) = 120° <em>divide both sides by 2</em>
m∠QPR = 60° and m∠PRQ = 60°
Therefore ΔPRQ is equaliteral.
ΔPSR is isosceles. Therefore ∠SPR and ∠PRS are congruent. Therefore
m∠SPR = m∠PRS
In ΔAPS we have:
m∠SPR + m∠PRS + m∠RSP = 180°
2(m∠SPR) + 90° = 180° <em>subtract 90° from both sides</em>
2(m∠SPR) = 90° <em>divide both sides by 2</em>
m∠SPR = 45° and m∠PRS = 45°
m∠PRQ = m∠PRS + b
Susbtitute:
60° = 45° + b <em>subtract 45° from both sides</em>
15° = b
In any case. if the x values (-6) are the same for both points the equation of line would be x = -6