Answer:
In a chemical reaction, chemical equilibrium is the state in which the forward reaction rate and the reverse reaction rate are equal. The result of this equilibrium is that the concentrations of the reactants and the products do not change.
Explanation:
The specific heat capacity of sand is much less than water because of which sands require less energy to cool down and similarly less energy to be heated... because of this it feels like sands absrob heat faster than water
Answer:
I think the second one
Explanation:
because the first one, in the second shape, shows the original cell
In order to answer this, we mus know the data for the heat of combustion of propane. This is an empirical data that you can search online. The heat of combustion is -2220 kJ/mol. The molar mass of propane of 44.1 g/mol. The solution is as follows:
ΔH = -2220 kJ/mol (1 mol/44.1 g)(1000g/1kg)(20 kg)
<em>ΔH = -1006802.721 kJ or -1 GJ</em>
Answer:
1.37x10²⁵atoms of carbon
2.74x10²⁵ atoms of oxygen.
33.7g of KNO₃
Explanation:
To answer this question you must use molar mass of carbon dioxide (44g/mol) and 1 mole are 6.022x10²³atoms.
1.00kg are 1000g of CO₂. Moles are:
1000g CO₂ * (1mol / 44g) = 22.73 moles of CO₂ = 22.73 moles of carbon.
In atoms:
22.73 moles C * (6.022x10²³atoms / 1mole) = 1.37x10²⁵atoms of carbon
There are 22.73 moles of CO₂ * 2 = 45.45 moles of oxygen are present in the carbon dioxide. In atoms:
45.45 moles Oxygen * (6.022x10²³atoms / 1mole) = 2.74x10²⁵ atoms of oxygen.
1 mole of Potassium nitrate, KNO₃, contains 3 moles of oxygen. 1 mol of oxygen are:
1.00 mol O * (1mol KNO₃ / 3 moles O) = 0.33 moles of KNO₃
As molar mass of KNO₃ is 101.1g/mol:
0.33 moles of KNO₃ * (101.1g / mol) = 33.7g of KNO₃