This reaction would produce salt and water- Sodium Sulphate and Water.
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4
Answer:
H2 > N2 > Ar > CO2
Explanation:
Graham's law explains why some gases efuse faster than others. This is due to the difference i their molar mass. Generally; The rate of effusion of gaseous substances is inversely proportional to the square rot of its molar mass.
This means gases with low molar masses would have higher efusion rate compared to gases with higher molar masses.
So now we just need to compare the molar masses of the various gases;
Ar - 39.95
CO2 - 44.01
H2 - 2
N2 - 28.01
To obtain the order in increasing rate, we have to order the gases in decreasing molar mass. This order of increasing rate is given as;
H2 > N2 > Ar > CO2
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Hope this helps!
So let's use some equations to represent the data [let R= cost of ring & B= cost of bracelet]
R= B + $ 36 .... (1)
B=

× R ... (2)
By using simultaneous equations to solve for B and R.
Substitute eq. (1) into eq. (2)
B =

× (B + $36)
B =

B +

⇒ B = $48
By substituting value of B into ea (1)
If R = B + $36
R = ($48) + $36
= $84
∴ <span> the total of the two items = R + B
= $84 + $48
</span> = $132