the overall equation for the conversation of pyruvate to acetyl COA is as below
CH3COO-COO- + NAD+ + HS-COA = ch3-COO-S -COA +NADH +CO2
The oxidation of pyruvate led to a conversation of NAD+ to NADH and produces acetyl COA and CO2
Use the formula
first step:
Use the formula
molarity= mole/liter
change ml to l
plug in data
to get .1=mole/.25 or .1M*.25liter
which =.025 moles
then divide .025 moles by two because there are two OH in Sr(OH)2
then multiply that by 265.76 (the molar mass of water)
.0125*265.76
which is 3.32grams this is your answer
Answer:
Explanation:
What would the answer be?
I believe it’s Chemical energy but please correct me if i’m wrong
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm