Answer:
50 kg water.
Step-by-step explanation:
We have been given that the number of kilograms of water in a human body varies directly as the mass of the body.
We know that two directly proportional quantities are in form
, where y varies directly with x and k is constant of variation.
We are told that an 87-kg person contains 58 kg of water. We can represent this information in an equation as:

Let us find the constant of variation as:



The equation
represents the relation between water (y) in a human body with respect to mass of the body (x).
To find the amount of water in a 75-kg person, we will substitute
in our given equation and solve for y.



Therefore, there are 50 kg of water in a 75-kg person.
50,779/590 is 90.7125 but rounded to 90.71
There shouldn't be a negative in front of one of the equations.
Answer:
y=2x-3
Step-by-step explanation:
Y-intercept can be read off the graph.
Slope can be determined using the formula:
y2-y1 divided by x2-x1 (Substitute co-ordinates)
Answer:
84.13% of bottles will have volume greater than 994 mL
Step-by-step explanation:
Mean volume = u = 1000
Standard deviation =
= 6
We need to find the proportion of bottles with volume greater than 994. So our test value is 994. i.e.
x = 994
Since the data is normally distributed we will use the concept of z-score to find the required proportion. First we convert 994 to its equivalent z-score, then using the z-table we will find the corresponding value of proportion. The formula to calculate the z score is:

Substituting the values, we get:

This means 994 is equivalent to a z score of -1. Now we will find the proportion of z values which are greater than -1 from the z table.
i.e. P(z > -1)
From the z-table this value comes out to be:
P(z >- 1) = 1 - P(z < -1) = 1 - 0.1587 = 0.8413
Since, 994 is equivalent to a z score of -1, we can write that proportion of values which will be greater than 994 would be:
P( X > 994 ) = P( z > -1 ) = 0.8413 = 84.13%