Answer:
Step-by-step explanation:
![\sf \cfrac{3x-2}{4}-\cfrac{2x-5}{3}=\cfrac{1+x}{6}](https://tex.z-dn.net/?f=%5Csf%20%5Ccfrac%7B3x-2%7D%7B4%7D-%5Ccfrac%7B2x-5%7D%7B3%7D%3D%5Ccfrac%7B1%2Bx%7D%7B6%7D)
First, let's find the LCM of 4, 3, and 6.
<u>How to find the LCM:</u>
→ List multiples of each number.
→ Find the smallest number on each list.
4: 4, 8, 12, 16, 20, 24..
3: 3, 6, 9, 12, 15, 18, 21, 24, 27....
6: 6, 12, 18, 24, 30, 36, 42...
<u>LCM: 12</u>
<u>_________</u>
Now, we'll Multiply by LCM:
![\sf \cfrac{3x-2}{4}\times \:12-\cfrac{2x-5}{3}\times \:12=\cfrac{1+x}{6}\times \:12](https://tex.z-dn.net/?f=%5Csf%20%5Ccfrac%7B3x-2%7D%7B4%7D%5Ctimes%20%5C%3A12-%5Ccfrac%7B2x-5%7D%7B3%7D%5Ctimes%20%5C%3A12%3D%5Ccfrac%7B1%2Bx%7D%7B6%7D%5Ctimes%20%5C%3A12)
Simplify:
![\sf 3\left(3x-2\right)-4\left(2x-5\right)=2\left(x+1\right)](https://tex.z-dn.net/?f=%5Csf%203%5Cleft%283x-2%5Cright%29-4%5Cleft%282x-5%5Cright%29%3D2%5Cleft%28x%2B1%5Cright%29)
Now, expand, Apply the Distributive property:
![\bold{ 3\left(3x-2\right)-4\left(2x-5\right)}](https://tex.z-dn.net/?f=%5Cbold%7B%203%5Cleft%283x-2%5Cright%29-4%5Cleft%282x-5%5Cright%29%7D)
![\sf 9x-6-8x+20](https://tex.z-dn.net/?f=%5Csf%20%209x-6-8x%2B20)
Combine like terms:
![\sf x+14](https://tex.z-dn.net/?f=%5Csf%20x%2B14)
________
![\bold{ 2\left(x+1\right)}](https://tex.z-dn.net/?f=%5Cbold%7B%202%5Cleft%28x%2B1%5Cright%29%7D)
![\sf 2x+2](https://tex.z-dn.net/?f=%5Csf%202x%2B2)
![\sf x+14=2x+2](https://tex.z-dn.net/?f=%5Csf%20x%2B14%3D2x%2B2)
Subtract 14 from both sides:
![\sf x+14-14=2x+2-14](https://tex.z-dn.net/?f=%5Csf%20x%2B14-14%3D2x%2B2-14)
Simplify:
![\sf x=2x-12](https://tex.z-dn.net/?f=%5Csf%20x%3D2x-12)
Subtract 2x from both sides:
![\sf x-2x=2x-12-2x](https://tex.z-dn.net/?f=%5Csf%20x-2x%3D2x-12-2x)
Simplify:
![\sf -x=-12](https://tex.z-dn.net/?f=%5Csf%20-x%3D-12)
Divide both sides by -1:
![\sf \cfrac{-x}{-1}=\cfrac{-12}{-1}](https://tex.z-dn.net/?f=%5Csf%20%5Ccfrac%7B-x%7D%7B-1%7D%3D%5Ccfrac%7B-12%7D%7B-1%7D)
![\sf x=12](https://tex.z-dn.net/?f=%5Csf%20x%3D12)
<h3><u>____________________________</u></h3>