x is equal to 0 because 6 is already equal to 6
so there shouldnt be another number unless its 0
0+6=6
Answer:
(A) Yes, since the test statistic is in the rejection region defined by the critical value, reject the null. The claim is the alternative, so the claim is supported.
Step-by-step explanation:
Null hypothesis: The wait time before a call is answered by a service representative is 3.3 minutes.
Alternate hypothesis: The wait time before a call is answered by a service representative is less than 3.3 minutes.
Test statistic (t) = (sample mean - population mean) ÷ sd/√n
sample mean = 3.24 minutes
population mean = 3.3 minutes
sd = 0.4 minutes
n = 62
degree of freedom = n - 1 = 62 - 1 = 71
significance level = 0.08
t = (3.24 - 3.3) ÷ 0.4/√62 = -0.06 ÷ 005 = -1.2
The test is a one-tailed test. The critical value corresponding to 61 degrees of freedom and 0.08 significance level is 1.654
Conclusion:
Reject the null hypothesis because the test statistic -1.2 is in the rejection region of the critical value 1.654. The claim is contained in the alternative hypothesis, so it is supported.
The value is 1/62
if it is wrong I am sorry but it should be
Answer:
B
Step-by-step explanation:
When looking at the number line, we can see the distance between A and B is one unit
A |-2| + |-1| = 2+1 =3 That is not 1 unit
B 2-1 =1 that is 1 unit
C -2 + -1 = -3 that is not 1 unit
D |-1| - (-2) = 1 + 2 =3 that is not 1 unit
Even though it says all expressions, there is only 1 that shows a distance of 1 unit
Answer:
after 75 minutes
Step-by-step explanation:
The least common multiple (LCM) of 15 and 25 is 75. It can be found a couple of ways:
1. List the factors of each number and find the product of the unique ones:
15 = 3·5
25 = 5²
The LCM is 3·5² = 75.
__
2. Find the greatest common divisor (GCD) and divide the product of the numbers by that value. From the above list of factors, we see that 5 is the GCD of 15 and 25. Then the LCM is ...
15·25/5 = 75
__
Or, you can simply list multiples of each number and see what the smallest number is that is in both lists:
15, 30, 45, 60, <em>75</em>, 90
25, 50, <em>75</em>, 100
__
The two buses will appear together again after 75 minutes.