Let's
simplify step-by-step.
3x2(x2−4x−4)+5x3+7x2+2x+11
Distribute:
=(3x2)(x2)+(3x2)(−4x)+(3x2)(−4)+5x3+7x2+2x+11
=3x4+−12x3+−12x2+5x3+7x2+2x+11
Combine
Like Terms:
=3x4+−12x3+−12x2+5x3+7x2+2x+11
=(3x4)+(−12x3+5x3)+(−12x2+7x2)+(2x)+(11)
=3x4+−7x3+−5x2+2x+11
Answer:
=3x4−7x3−5x2+2x+11
<span> </span>
Answer:
hi
Step-by-step explanation:
hi
Answer: 16 square units
Step-by-step explanation:
let the vertex in quadrant I be (x,y)
then the vertex in quadratnt II is (-x,y)
base of the rectangle = 2x
height of the rectangle = y
Area = xy
= x(12 - x²)
= -x³ + 12x
d(area)/dx = 3x² - 12 = 0 for a maximum of area
3x² = 12
x² = 4
x = ±2
y = 12-4 = 8
So, the largest area = 2 x 8 = 16 square units
Answer: 9 associate property 8 commutative property
Step-by-step explanation: