So, what is the case in which he uses the least coins? can he use 1 coin? no, there isn't a 35 cent coin. can he use 2 coins? yes! he can use 25+10 cent coins!
now, the largest number of coins means the coins of the smallest value: so using only 5 cent coins. How many would this be?
we have to divide:
35/5=7
so we would use 7 coins.
And the difference is 5: 7-2 is 5.
Answer:
<h2>14mph</h2>
Step-by-step explanation:
Given the gas mileage for a certain vehicle modeled by the equation m=−0.05x²+3.5x−49 where x is the speed of the vehicle in mph. In order to determine the speed(s) at which the car gets 9 mpg, we will substitute the value of m = 9 into the modeled equation and calculate x as shown;
m = −0.05x²+3.5x−49
when m= 9
9 = −0.05x²+3.5x−49
−0.05x²+3.5x−49 = 9
0.05x²-3.5x+49 = -9
Multiplying through by 100
5x²+350x−4900 = 900
Dividing through by 5;
x²+70x−980 = 180
x²+70x−980 - 180 = 0
x²+70x−1160 = 0
Using the general formula to get x;
a = 1, b = 70, c = -1160
x = -70±√70²-4(1)(-1160)/2
x = -70±√4900+4640)/2
x = -70±(√4900+4640)/2
x = -70±√9540/2
x = -70±97.7/2
x = -70+97.7/2
x = 27.7/2
x = 13.85mph
x ≈ 14 mph
Hence, the speed(s) at which the car gets 9 mpg to the nearest mph is 14mph
Answer:
First graph it out. Once you do that you can see that QR is the same as RS. So you can do the equation 5x-4=2x+2. Once you solve this out you would get 2.4. I'm just an advanced 7th grader, so you can redo the problem to make sure
Step-by-step explanation:
QS=2.4