1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
4 years ago
7

What segment is an altitude of triangle ABC?

Mathematics
1 answer:
sergejj [24]4 years ago
6 0
The best and most correct answer among the choices provided by your question is the third choice.

Line segment BD is the altitude of triangle ABC.

I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
You might be interested in
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
The boiling point of water is 212 degrees Fahrenheit. Can this thermometer be used to record the temperature of a boiling pot of
Salsk061 [2.6K]
Yes because the thermometer reads temperatures higher than 2.12 degrees
4 0
3 years ago
Read 2 more answers
Find values of  that satisfy the equation for 0º    360º and 0  θ  2 . Give answers in degrees and radians.
suter [353]

Answer:

\theta = 30^\circ, 330^\circ

\theta = \frac{\pi}{6}, \frac{11\pi}{6}

Step-by-step explanation:

Given [Missing from the question]

Equation:

cos\theta = \frac{\sqrt 3}{2}

Interval:

0 \le \theta \le 360

0 \le \theta \le 2\pi

Required

Determine the values of \theta

The given expression:

cos\theta = \frac{\sqrt 3}{2}

... shows that the value of \theta is positive

The cosine of an angle has positive values in the first and the fourth quadrants.

So, we have:

cos\theta = \frac{\sqrt 3}{2}

Take arccos of both sides

\theta = cos^{-1}(\frac{\sqrt 3}{2})

\theta = 30 --- In the first quadrant

In the fourth quadrant, the value is:

\theta = 360 -30

\theta = 330

So, the values of \theta in degrees are:

\theta = 30^\circ, 330^\circ

Convert to radians (Multiply both angles by \pi/180)

So, we have:

\theta = \frac{30 * \pi}{180}, \frac{330 * \pi}{180}

\theta = \frac{\pi}{6}, \frac{33 * \pi}{18}

\theta = \frac{\pi}{6}, \frac{11 * \pi}{6}

\theta = \frac{\pi}{6}, \frac{11\pi}{6}

8 0
3 years ago
There are 48 people in gym class
nika2105 [10]

Answer:

2

Step-by-step explanation:

5/8 8 people in all, 5 were in spin class, 1 was lifting weights, 2 were running.

6 0
3 years ago
Read 2 more answers
What is the leading coefficient that would be used for scientific notation of this number? (12,500,000,000)
SIZIF [17.4K]

Answer:

1.25 would be the leading coefficient

Step-by-step explanation:

Leading coefficients in scientific notation have to be more than 1, and less than 10. Therefore, 12.5 or 0.125 would not be correct answers as they do not fit the criteria. Only 1.25 would work as the leading coefficient.

4 0
3 years ago
Other questions:
  • Which of the following has six faces?
    7·1 answer
  • which translation vectors could have been used for the pair of figures? PLEASE HELP I NEED A GOOD GRADE
    11·2 answers
  • Does anyone want an xbox game pass code? I literally have no use for it.
    10·1 answer
  • The interior angles formed by the sides of a hexagon have measures that sum to 720°. What is the measure of angle F?
    11·2 answers
  • You just got a free ticket for a boat ride, and you can bring along 3 friends! Unfortunately, you have 5 friends
    5·1 answer
  • What's the answer and how do I solve it
    9·1 answer
  • Which expression correctly represents twice of the sum of four and a number
    13·2 answers
  • What is the measure of BCD?<br> Enter your answer in the box.<br><br> the measure of BCD = [ ]
    14·2 answers
  • Write in numbers: seven times the quotient of 8 and 5
    5·1 answer
  • The price paid for a $15 shirt after a 45% discount is applied​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!