Answer:
with a .95 probability, the sample mean will provide a margin of error 0.196
Step-by-step explanation:
margin of error (ME) from the mean can be calculated using the formula
ME=
where
- z is the corresponding statistic in the .95 confidence level (1.96)
- s is the population standard deviation (1 min.)
- N is the sample size (100)
ME=
=0.196
95% confidence interval for check-out time would be 3 ±0.196 min
<em><u>Hope</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<span>The reference angle is closest to the x-axis.
I will assume the above is 7pi/6. That would be a reference angle of pi/6, and the sin in the 3rd quadrant is negative, so the sin theta = - 0.5</span>