1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
13

Can someone help me with these two math problems. ( Will Mark Brainliest). ​

Mathematics
1 answer:
SOVA2 [1]3 years ago
5 0

Answer:

A 83 cups

B 16 cups.

Step-by-step explanation:

A) the volume of the cone = 1/3 pi r^2 h

= 1/3 pi 2^2 * 6

= 8pi

Number of cups needed = 2000/3 pi / 8  pi

= 83 cups to the nearest cup.

B)  Volume of this cup is  1/3 pi 4^2 * 8 = 128/3 pi

Number of cups required = 2000/ 3  * 3 / 128

=  15. 6 cups.

You might be interested in
A) Write down the inequality for x that is shown on this line.
stiv31 [10]

Answer:

a. x<3

b. 3,4,5,6

c.x>6

8 0
3 years ago
I read 1/4 of the book on Saturday and 2/5 of the remainder on Sunday. If 36 pages still remain to be read, how many pages are t
VashaNatasha [74]
He read 13/20 pages
5 0
4 years ago
⚠️⚠️⚠️⚠️⚠️HELP HELP HELP HELP PLEASEEEE I HAVE 7 MINUTES LEFT ⚠️⚠️⚠️⚠️⚠️
shutvik [7]

Answer:

C

Step-by-step explanation:

3 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
How you do you solve for it??
AysviL [449]
Sam is dead, im sorry to have to tell you over line, i love you mom
With love,
                 Mike 

6 0
3 years ago
Other questions:
  • Billy Bob got his first job earning minimum wage. If he earns $108.75 after working 15 hours, how much money will he earn after
    9·2 answers
  • Annie bakes cookies and cupcakes in a ratio of 2 to 7 for her gift boxes. Her school needs 36 desserts to sell in a bake sale. H
    12·1 answer
  • Find the value of x round to the nearest tenth
    7·1 answer
  • I need help with this question
    8·2 answers
  • Carlos is using a number line to add another integer to –4. He begins by showing –4 on the number line, as shown below. Carlos a
    11·1 answer
  • Based on the graph how many real number solutions to the equation X^3+6x^2+12x+8=0have
    10·1 answer
  • Х = 7y - 22<br> Зу - х = 14<br> Need help asap
    15·1 answer
  • Pls help I’m stuck with this problem
    13·1 answer
  • 25x²+0x-1<br><br> Factor completely<br><br> Please provide an explanation if able
    9·2 answers
  • Nelson and Jamie both want to buy a $250 bicycle.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!