The expressions with radicals which are variables and numbers raised to a fractional indices are simplified as follows.
13. √(9·x) = 3·√x
14. √(4·y) = 2·√y
15. √(8·x²) = 2·x·√2
16. √(9·x²) = 3·x
17. √(3·x²) = x·√3
18. √(5·y²) = y·√5
19. √(13·x²) = x·√(13)
20. √(29·y²) = y·√(29)
21. √(64·y²) = 8·y
22. √(125·a²) = 5·a·√5
23. ∛(16) = 2·∛2
24. √(50·a²·b) = 5·a·√(2·b)
<h3>What are radicals expressions?</h3>
A radical expression is one that contains the radical (square root or nth root) sign, √.
13. √(9·x)
√(9·x) = √(3²·x) = 3·√x
14. √(4·y)
√(4·y) = √(2²·y) = 2·√y
15. √(8·x²)
√(8·x²) = √(4 × 2·x²) = √(2² × 2·x²)
√(2² × 2·x²) = √(2²·x² × 2) = 2·x·√2
16. √(9·x²)
√(9·x²) = √(3²·x²) = 3·x
17. √(3·x²)
18. √(5·y²)
√5 × √(y²) = √5 × y = y·√5
19. √(13·x²)
√(13·x²) = √(13) × √x² = √(13) × x = x·√(13)
20. √(29·y²)
√(29·y²) = √(29) × √(y²) = √(29) × y = y·√(29)
21. √(64·y²)
√(64·y²) = √(8²·y²) = √(8²) × √(y²) = 8 × y = 8·y
22. √(125·a²)
√(125·a²) = √(25 × 5 × a²) = √(25) × √5 × √(a²) = 5 × √5 × a
5 × √5 × a = 5·a·√5
23. ∛(16)
∛(16) = ∛(16) = ∛(8 × 2) = ∛(2³ × 2) = 2·∛2
24. √(50·a²·b)
√(50·a²·b) = √(25 × 2 × a² × b) = √(5² × 2 × a² × b) = √(5² × a² × 2 × b)
√((5² × a²) × 2 × b) = 5·a·√(2·b)
Learn more about simplifying expressions with radicals here:
brainly.com/question/13114751
#SPJ1
Daniel's age is X
Daniel's brother age is Y
X = 3 + ( 2Y )
Y = ( X - 3 ) / 2
In case of Daniel is 17
then his brother's age is = ( 17 - 3 ) / 2 = 7 years
What ? answer? dont know which one
Answer:
4
Step-by-step explanation:
Slope refers to the steepness of the line.
Slope is equal to change in value of y divided by change in value of x.
The slope of the secant line is given by
.
Given points are 
So, slope of the secant line is 
(i) At x = 4.9,

(ii) At x = 4.99,

(iii) At x = 4.999,

(iv) At x = 4.9999,

(v) At x =5.1,

(vi)
At x = 5.01,

(vii) At x = 5.001,

(viii) At x = 5.0001,

(b)
Slope of the tangent line is 4.
For this, all you have to do is create equations where all you have to do is change the x value. The equation for gym A would be 35 + 42x, where x is the number of months he has the membership, and the first number is the initial fee. The equation for gym B would be 65 + 36x, following the same rules. Now all you have to do is set both of these equations equal to each other:
65+36x=35+42x
Solving this equation results in x=5, which means that he has to have the memberships for 5 months for them to be equal. Now just plug that in to one side of the equation to get the amount he has to spend:
65+36(5) = $245