1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
2 years ago
11

Write an equation in slope-intercept form for the line with slope 8 and y-intercept -9

Mathematics
1 answer:
sdas [7]2 years ago
7 0

Answer:y=8x-9

Step-by-step explanation:

You might be interested in
In the figure below, BD and EC are diameters of circle P.
Zinaida [17]

Answer: 333 degrees

Step-by-step explanation:

8 0
3 years ago
In ABC, what is the value of x?<br><br> Pls hurry im on a time limit here
kiruha [24]

Answer:

70

Step-by-step explanation:

By exterior angle theorem:

(2x + 12) \degree = 112 \degree + 180 \degree - 2x \degree \\  \\ (2x + 12) \degree = 292 \degree - 2x \degree \\  \\ (2x + 12) \degree  + 2x \degree = 292 \degree \\  \\ (2x + 12 + 2x) \degree = 292 \degree \\  \\ (4x + 12) \degree = 292 \degree \\  \\ 4x + 12  = 292  \\  \\ 4x = 292 - 12 \\  \\ 4x = 280 \\  \\ x =  \frac{280}{4}  \\  \\ x = 70

6 0
2 years ago
Graph the line that represents this equation:<br> y = -5.1 +2
Mrac [35]
That's for the equation I got from the picture

4 0
3 years ago
Find the base of a parallelogram with the area of 60 in.² and height of 4 inches use the formula for the area of the parallelogr
Alexxx [7]
A = bh
60 in.² = b(4)
60/4 = b
b = 15 inches

Hope this helped!
7 0
3 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
2 years ago
Other questions:
  • Find the area between the graph of the function and the x-axis over the given interval, if possible.
    8·1 answer
  • Helppppppppppppppppppppppppp
    13·1 answer
  • I need help pleaseeeeee
    10·1 answer
  • The quality control team of a company checked 800 digital cameras for defects. The team found that 20 cameras had lens defects,
    15·1 answer
  • Use the quadratic equation x^2+3x+5=0 to answer the questions. A: What is the discriminant of the quadratic equation? B: Based o
    8·2 answers
  • I just feel like doing a challenge. Dont actually need help, so if you dont feel like answering, no problem. But what is 321 tim
    5·2 answers
  • I need help please explain
    8·2 answers
  • If f(x) = x and g(x) = vx, what is f(g(x) when x = -3?
    10·1 answer
  • -4 = 5 - x. SHOW ALL STEPS!
    15·2 answers
  • 21=x+21 ty for hrlping step by step pls
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!