Answer: VW= 23
Step-by-step explanation:
Because UV = UX the bisector has to split it evenly therefor WX = VW
So the answer is 23! Does this make sense?
The opposite is just 1. Positive 1.
Step-by-step answer:
This is a regular heptagon, means it has 7 <em>congruent</em> sides and 7 <em>congruent </em>vertex angles.
To work with polygons, there is a very important piece of information that you must know to solve the majority of related problems.
This is:
sum of exterior angles of polygons = 360 degrees.
If you don't remember the 360 degrees, think of the sum of exterior angles of an equilateral triangle, which is 3*(180-60)=3*120=360! It works!
For a regular heptagon, c = 360/7=51.43 degrees approx.
This means that each vertex angle measures
vertex angle = 180-c
So since 2d+the vertex angle = 360, we have
2d+(180-c)=360
solve for d:
2d=360-(180-c)=180+c
d=(180+c)/2=90+c/2=115.71 degrees. (approx.)
9514 1404 393
Answer:
1. ∠EDF = 104°
2. arc FG = 201°
3. ∠T = 60°
Step-by-step explanation:
There are a couple of angle relationships that are applicable to these problems.
- the angle where chords meet is half the sum of the measures of the intercepted arcs
- the angle where secants meet is half the difference of the measures of the intercepted arcs
The first of these applies to the first two problems.
1. ∠EDF = 1/2(arc EF + arc UG)
∠EDF = 1/2(147° +61°) = 1/2(208°)
∠EDF = 104°
__
2. ∠FHG = 1/2(arc FG + arc ES)
128° = 1/2(arc FG +55°) . . . substitute given information
256° = arc FG +55° . . . . . . multiply by 2
201° = arc FG . . . . . . . . . subtract 55°
__
3. For the purpose of this problem, a tangent is a special case of a secant in which both intersection points with the circle are the same point. The relation for secants still applies.
∠T = 1/2(arc FS -arc US)
∠T = 1/2(170° -50°) = 1/2(120°)
∠T = 60°