Answer:
8x⩽112
Step-by-step explanation:
Width of the rectangle (in centimeters) = x
Therefore, the lenght of the rectable is 3x (in centimeters).
The perimeter of the rectangle (in centimeters) is : 2x+2*3x=2x+6x=8x.
The perimeter of the rectangle is at most 112cm, therefore, 8x⩽112.
Answer:
see explanation
Step-by-step explanation:
The sum of the 3 angles in a triangle = 180°
sum the 3 angles and equate to 180
5x + 7 + 4x + 2 + 90 = 180 , that is
9x + 99 = 180 ( subtract 99 from both sides )
9x = 81 ( divide both sides by 9 )
x = 9
Then
∠ ACB = 4x + 2 = 4(9) + 2 = 36 + 2 = 38°
∠ BAC = 5x + 7 = 5(9) + 7 = 45 + 7 = 52°
-----------------------------------------------------------------------
Since the triangles are congruent then corresponding angles are congruent , so
∠ B = ∠ E
6x + 10 = 70 ( subtract 10 from both sides )
6x = 60 ( divide both sides by 6 )
x = 10
Y-intercept looks like -1.5 and slope is -1/4
so hmmm seemingly the graphs meet at -2 and +2 and 0, let's check

so f(x) = g(x) at those points, so let's take the integral of the top - bottom functions for both intervals, namely f(x) - g(x) from -2 to 0 and g(x) - f(x) from 0 to +2.
![\stackrel{f(x)}{2x^3-x^2-5x}~~ - ~~[\stackrel{g(x)}{-x^2+3x}]\implies 2x^3-x^2-5x+x^2-3x \\\\\\ 2x^3-8x\implies 2(x^3-4x)\implies \displaystyle 2\int\limits_{-2}^{0} (x^3-4x)dx \implies 2\left[ \cfrac{x^4}{4}-2x^2 \right]_{-2}^{0}\implies \boxed{8} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bf%28x%29%7D%7B2x%5E3-x%5E2-5x%7D~~%20-%20~~%5B%5Cstackrel%7Bg%28x%29%7D%7B-x%5E2%2B3x%7D%5D%5Cimplies%202x%5E3-x%5E2-5x%2Bx%5E2-3x%20%5C%5C%5C%5C%5C%5C%202x%5E3-8x%5Cimplies%202%28x%5E3-4x%29%5Cimplies%20%5Cdisplaystyle%202%5Cint%5Climits_%7B-2%7D%5E%7B0%7D%20%28x%5E3-4x%29dx%20%5Cimplies%202%5Cleft%5B%20%5Ccfrac%7Bx%5E4%7D%7B4%7D-2x%5E2%20%5Cright%5D_%7B-2%7D%5E%7B0%7D%5Cimplies%20%5Cboxed%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{g(x)}{-x^2+3x}~~ - ~~[\stackrel{f(x)}{2x^3-x^2-5x}]\implies -x^2+3x-2x^3+x^2+5x \\\\\\ -2x^3+8x\implies 2(-x^3+4x) \\\\\\ \displaystyle 2\int\limits_{0}^{2} (-x^3+4x)dx \implies 2\left[ -\cfrac{x^4}{4}+2x^2 \right]_{0}^{2}\implies \boxed{8} ~\hfill \boxed{\stackrel{\textit{total area}}{8~~ + ~~8~~ = ~~16}}](https://tex.z-dn.net/?f=%5Cstackrel%7Bg%28x%29%7D%7B-x%5E2%2B3x%7D~~%20-%20~~%5B%5Cstackrel%7Bf%28x%29%7D%7B2x%5E3-x%5E2-5x%7D%5D%5Cimplies%20-x%5E2%2B3x-2x%5E3%2Bx%5E2%2B5x%20%5C%5C%5C%5C%5C%5C%20-2x%5E3%2B8x%5Cimplies%202%28-x%5E3%2B4x%29%20%5C%5C%5C%5C%5C%5C%20%5Cdisplaystyle%202%5Cint%5Climits_%7B0%7D%5E%7B2%7D%20%28-x%5E3%2B4x%29dx%20%5Cimplies%202%5Cleft%5B%20-%5Ccfrac%7Bx%5E4%7D%7B4%7D%2B2x%5E2%20%5Cright%5D_%7B0%7D%5E%7B2%7D%5Cimplies%20%5Cboxed%7B8%7D%20~%5Chfill%20%5Cboxed%7B%5Cstackrel%7B%5Ctextit%7Btotal%20area%7D%7D%7B8~~%20%2B%20~~8~~%20%3D%20~~16%7D%7D)