To calculate the velocity, we use the given expression above which is <span>s(t) = −16t^2 + 144. First, we calculate the time it takes to reach the ground. Then, differentiate the expression and substitute time to the differentiated expression.
</span>s(t) = −16t^2 + 144
0 = -16t^2 + 144
t = 3
s'(t) = v = -32t
v = -32(3)
v = -96
Note: negative sign signifies that the object is going down
Answer:
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
The sketch is drawn at the end.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 0°C and a standard deviation of 1.00°C.
This means that 
Find the probability that a randomly selected thermometer reads between −2.23 and −1.69
This is the p-value of Z when X = -1.69 subtracted by the p-value of Z when X = -2.23.
X = -1.69



has a p-value of 0.0455
X = -2.23



has a p-value of 0.0129
0.0455 - 0.0129 = 0.0326
0.0326 = 3.26% probability that a randomly selected thermometer reads between −2.23 and −1.69.
Sketch:
Answer:
2(5)+17 = 27
Step-by-step explanation:
Hope this helps answer your question(s). Please mark brainliest and enjoy the rest of your day!
We can solve for x by raising both sides to the -3 power (which is the reciprocal of -1/3):
(c^-1/3)^-3 = x^-3
c^1=x^-3
c=x^-3
Since the exponent on the x is a negative, we have to move it to the denominator to make it positive:
c= 1/x³