2(2x-3) + 2(x+6) = P
(4x - 6) + (2x + 12) = P
6x + 6 = P ~answer~
(2x-3)(x+6) = A
2x^2 + 12x -3x - 18
2x^2 + 9x - 18 = A. ~answer~
Answer:
7. ∠CBD = 100°
8. ∠CBD = ∠BCE = 100°; ∠CED = ∠BDE = 80°
Step-by-step explanation:
7. We presume the angles at A are congruent, so that each is 180°/9 = 20°.
Then the congruent base angles of isosceles triangle ABC will be ...
∠B = ∠C = (180° -20°)/2 = 80°
The angle of interest, ∠CBD is the supplement of ∠ABC, so is ...
∠CBD = 180° -80°
∠CBD = 100°
__
8. In the isosceles trapezoid, base angles are congruent, and angles on the same end are supplementary:
∠CBD = ∠BCE = 100°
∠CED = ∠BDE = 80°
H(t) = −16t^2 + 75t + 25
g(t) = 5 + 5.2t
A)
At 2, h(t) = 111, g(t) = 15.4
At 3, h(t) = 106, g(t) = 20.6
At 4, h(t) = 69, g(t) = 25.8
At 5, h(t) = 0, g(t) = 31
The heights of both functions would have been the closest value to each other after 4 seconds, but before 5 seconds. This is when g(x) is near 30 (26-31), and the only interval that h(t) could be near 30 is between 4 and 5 seconds (as it is decreasing from 69-0).
B) The solution to the two functions is between 4 and 5 seconds, as that is when their height is the same for both g(t) and h(t). Actually the height is at 4.63 seconds, their heights are both
What this actually means is that this time and height is when the balls could collide; or they would have hit each other, given the same 3-dimensional (z-axis) coordinate in reality.
Answer:
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What is the probability that a randomly selected airfare between these two cities will be between $325 and $425?
This is the pvalue of Z when X = 425 subtracted by the pvalue of Z when X = 325. So
X = 425



has a pvalue of 0.7088
X = 325



has a pvalue of 0.1814
0.7088 - 0.1814 = 0.5274
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425