Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
D because the line is decreasing .
10.4% as a fraction is 104/1000
To solve, we will follow the steps below:
3x+y=11 --------------------------(1)
5x-y=21 ------------------------------(2)
since y have the same coefficient, we can eliminate it directly by adding equation (1) and (2)
adding equation (1) and (2) will result;
8x =32
divide both-side of the equation by 8
x = 4
We move on to eliminate x and then solve for y
To eliminate x, we have to make sure the coefficient of the two equations are the same.
We can achieve this by multiplying through equation (1) by 5 and equation (2) by 3
The result will be;
15x + 5y = 55 ----------------------------(3)
15x - 3y =63 --------------------------------(4)
subtract equation (4) from equation(3)
8y = -8
divide both-side of the equation by 8
y = -1
Answer:
7.0 x 10 to the 6th
Step-by-step explanation: