(xy)' + (2x)' + (3x^2)' = (4)'
y + xy' + 2 + 6x = 0
xy' = -y -2 -6x
y' = [-y -2 -6x] / x
Now solve y from the original equation and substitue
xy + 2x + 3x^2 = 4 => y = [-2x - 3x^2 + 4] / x
y' = [(-2x - 3x^2 +4) / x - 2 - 6x ] / x
y' = [-2x - 3x^2 + 4 -2x -6x^2 ] x^2 = [ -4x - 9x^2 + 4] / x^2 =
= [-9x^2 - 4x + 4] / x^2
7 ÷ 53
<span>0.132075 </span>
<span>0.132075 * 100
13.21%</span>
Hello :
<span>y = x2 - 16x + 66
y=(x²-16x+64)-64+66
y = (x-8)²+2 .....(</span><span>vertex form)</span>
3x-15=51
3x=36
X= 12
Thus the number is 12