To solve this problem it is necessary to apply the concepts related to transformers, that is to say passive electrical device that transfers electrical energy from one electrical circuit to one or more circuits.
From the mathematical definition we have that the relationship between the voltage of the first coil and the second coil is proportional to the number of loops of the first and second loop, that is:

Where
input voltage on the primary coil.
input voltage on the secondary coil.
number of turns of wire on the primary coil.
number of turns of wire on the secondary coil.
Replacing our values we have:



Replacing,


From the same relations of number of turns and the voltage of the first and second coil we also have the relation of electricity and voltage whereby:

Where
= Current Primary Coil
= Current secundary Coil
Therefore:



Therefore the maximum values for the secondary coil of the voltage is 410.56V and Current is 1.87A
I believe the answer is CONVECTION.
hope that helps!!!
You must observe the object twice.
-- Look at it the first time, and make a mark where it is.
-- After some time has passed, look at the object again, and
make another mark at the place where it is.
-- At your convenience, take out your ruler, and measure the
distance between the two marks.
What you'll have is the object's "displacement" during that period
of time ... the distance between the start-point and end-point.
Technically, you won't know the actual distance it has traveled
during that time, because you don't know the route it took.
Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant = 
The given balanced equilibrium reaction is,

The expression of
will be,

Now put all the values of partial pressure, we get


Therefore, the partial pressure of
is, 67.009 atm