If that's the case, then
50 units = 0.55 x the input energy
Divide each side by 0.55 :
50 units/0.55 = the input energy =
<span> 90 and 10/11 units</span>
Answer:
Energy absorbed or hidden when water evaporates
Explanation:
The heat that is required to make a phase change is known as latent heat.
A phase change occurs when matter changes state. For example from solid to liquid, from liquid to gas, among others.
When changing from liquid to gas (for example when water evaporates), the heat necessary for this to happen is called latent heat of vaporization. The word latent means hidden, because a change in temperature is not perceived during the phase change, even when heat is being added, thus it is said that the heat is hidden or latent.
So the answer is:
- Energy absorbed or hidden when water evaporates.
*Another type of latent heat is the latent heat of fusion, which is when a solid becomes liquid.
Answer:
v = 2.974
Explanation:
Perhaps the formula should be
v = √(2*g*d (sin(θ) - uk*cos(θ) ) This is a bit easier to read.
v = √(2* 9.80*0.725(0.707 - 0.12*0.707) ) Substitute values. Find 2*g*d
v = √14.21 * (0.707 - 0.0849) Figure out Sin(θ) - uk cos(θ)
v = √14.21 * (0.6222)
v = √8.8422 Take the square root of the value
v = 2.974
The terminal velocity as it falls through still air is 4.65154 in/s.
The diameter of small water droplet is 1.25 mil= 1.25×0.0254×10^-3 m
= 3.175 × 10^-5 m
Now the viscosity of still air is η = 1.83× 10⁻⁵ Pa
So the formula for drag force is:
Fd = 6πηrv
where, v is the velocity.
Now to attain terminal velocity acceleration must be zero.
→ W = Fd
ρVg = 6πrηv
ρ × 4/3 πr³×g = 6πrηv
v = 2/9 × ρgr³/ η
v = 2/9 × 10³×9.81×(3.175×10^-3) / 18.6×10^-6
v = 0.1181 m/s
v = 4.65154 in/s
Learn more about terminal velocity here:
brainly.com/question/20409472
#SPJ4