²⁵/₉
<h3>Further explanation</h3>
We will solve the problem of repeating decimals.
<u>Definition:</u>
A decimal number whose decimal part has digits which repeat endlessly is called a repeating decimal.
For example,
is a repeating decimal. The three dots mean the digits in the decimal part repeat infinitely.
Notice that when we carry out the division
, the quotient never ends (or terminates) because zero never appears as a remainder. The block of two digits, 12, keeps appearing and no other digits appear. Often we use a bar (-) to show the block of digits which repeats in a decimal: ![\boxed{ \ \ 0. \overline{12} = 0.121212... \ \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20%5C%200.%20%5Coverline%7B12%7D%20%3D%200.121212...%20%5C%20%5C%20%7D)
<u>Given:</u>
![\boxed{ \ 2.77777... = 2.\overline{7} \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%202.77777...%20%3D%202.%5Coverline%7B7%7D%20%5C%20%7D)
<u>Question:</u>
Express it as a fractional form.
<u>Problem Solving:</u>
Let ![\boxed{ \ x = 2.77777... \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20x%20%3D%202.77777...%20%5C%20%7D)
Both sides multiplied by 10.
Then ![\boxed{ \ 10x = 27.77777... \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%2010x%20%3D%2027.77777...%20%5C%20%7D)
Let us subtract 10x by x. Subtract side by side.
![\boxed{ \ 10x = 27.77777... \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%2010x%20%3D%2027.77777...%20%5C%20%7D)
![\ \ \boxed{ \ \ \ \ x = 2.77777.... \ }](https://tex.z-dn.net/?f=%20%5C%20%5C%20%5Cboxed%7B%20%5C%20%5C%20%5C%20%5C%20x%20%3D%202.77777....%20%5C%20%7D)
-_______________
![\boxed{ \ \ \ 9x = 25 \ \ \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20%5C%20%5C%209x%20%3D%2025%20%5C%20%5C%20%5C%20%7D)
![\boxed{ \ x = \frac{25}{9} \ }](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5C%20x%20%3D%20%5Cfrac%7B25%7D%7B9%7D%20%5C%20%7D)
Therefore, the result is ![\boxed{\boxed{ \ 2.\overline{7} = \frac{25}{9} \ }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%20%5C%202.%5Coverline%7B7%7D%20%3D%20%5Cfrac%7B25%7D%7B9%7D%20%5C%20%7D%7D)
<h3>Learn more</h3>
- Find out the fraction of the space within the atom is occupied by the nucleus brainly.com/question/10818405
- A repeating decimal brainly.com/question/1757979
- ²/₇m - ¹/₇ = ³/₁₄ solve step by step brainly.com/question/4853649
Keywords: 2.77777..., repeating as fraction, decimals, number, repeat endlessly, infinitely, the division, the quotient, subtract, ²⁵/₉