A) The answer is 5.
nCr = n! / (r! (n - r)!)
n - number of things to be chosen from
r - number of chosen things
There are five seniors in a class: n = 5
<span>I choose one senior: r = 1
</span>
nCr = n! / (r! (n - r)!)
5C1 = 5! / (1! (5 - 1)!)
= (5 * 4 * 3 * 2 * 1) / (1 * 4!)
= 120 / (4 * 3 * 2 * 1)
= 120 / 24
= 5
b) The answer is 10.
nCr = n! / (r! (n - r)!)
n - number of things to be chosen from
r - number of chosen things
There are five seniors in a class: n = 5
I choose two seniors: r = 2
nCr = n! / (r! (n - r)!)
5C2 = 5! / (2! (5 - 2)!)
= (5 * 4 * 3 * 2 * 1) / ((2 * 1) * 3!)
= 120 / (2 * (3 * 2 * 1))
= 120 / (2 * 6)
= 120 / 12
= 10
c) The answer is 10.
nCr = n! / (r! (n - r)!)
n - number of things to be chosen from
r - number of chosen things
There are five seniors in a class: n = 5
I choose three seniors: r = 3
nCr = n! / (r! (n - r)!)
5C3 = 5! / (3! (5 - 3)!)
= (5 * 4 * 3 * 2 * 1) / ((3 * 2 * 1) * 2!)
= 120 / (6 * (2 * 1))
= 120 / (6 * 2)
= 120 / 12
= 10
d) The answer is 5.
nCr = n! / (r! (n - r)!)
n - number of things to be chosen from
r - number of chosen things
There are five seniors in a class: n = 5
I choose four seniors: r = 4
nCr = n! / (r! (n - r)!)
5C4 = 5! / (4! (5 - 4)!)
= (5 * 4 * 3 * 2 * 1) / ((4 * 3 * 2 * 1) * 1!)
= 120 / (24 * 1)
= 120 / 24
= 5
e) The answer is 1.
nCr = n! / (r! (n - r)!)
n - number of things to be chosen from
r - number of chosen things
There are five seniors in a class: n = 5
I choose five seniors: r = 5
nCr = n! / (r! (n - r)!)
5C5 = 5! / (5! (5 - 5)!)
= (5 * 4 * 3 * 2 * 1) / ((5 * 4 * 3 * 2 * 1) * 1!)
= 120 / (120 * 1)
= 120 / 120
= 1
Answer:
THE FIRST OPTION
Step-by-step explanation:
GIVE ME BRAINLIEST
750 kilometers. 21 divided by 7 is 3. If 7 cm equals 250 km, then 7 × 3 = 250.
let's find the area of the outer circle and the inside circle
the inside's circle area
A= π x 6²=36π
the outer's
A' = π x 4x²= 4πx²
A'-A=4πx²- 36π=160πcm² equivalent to x²- 9=40, so x²=49 implies x =sqrt(49)=7, x=7.
Answer:
Below.
Step-by-step explanation:
Plot following points.
Calculate the point by plugging in values of x into x^2 + 1
for example When x = 0, y = 0^1 + 1 = 1.
So plot plot (0, 1),
Make a table of points to plot:
x -3 -2 -1 0 1 2 3
y 10 5 2 1 2 5 10
When you plot the points you'll see the graph is U shaped.
The function is of second degree (as it contains x^2) so it wont be linear.