First, let's find the slope of the line from the points given.
m = (4 - - 2) / (3 - 1)
m = 6 / 2
m = 3
Secondly, we know that a line perpendicular to the original must have a slope that is the opposite reciprocal of the original. For the given points, the opposite reciprocal slope would be -1/3.
Now, we can put all of the equations below into slope intercept form and find the ones that have a slope of -1/3.
Equation 1: Correct
y = -1/3x - 5
Equation 2: Incorrect
y = 3x - 3
Equation 3: Incorrect
y - 2 = 3(x + 1)
y - 2 = 3x + 1
y = 3x + 2
Equation 4: Correct
x + 3y = 9
3y = -x + 9
y = -1/3x + 3
Equation 5: Incorrect
3x + y = -5
y = -3x - 5
Hope this helps!! :)
Was there a chart with this?
Answer:
The length of GH is half the length of KL.
Full question...
To prove part of the triangle midsegment theorem using the diagram, which statement must be shown?
The length of JK equals the length of JL.
The length of GH is half the length of KL.
The slope of JK equals the slope of JL.
The slope of GH is half the slope of KL.
So once again the answer is the second one: The length of GH is half the length of KL.
F(-3) means when x = -3
Find the value on the graph
Solution: f(-3) = 6
Answer:
Find the linearization L(x,y) of the function at each point. f(x,y) = x2 + y2 + 1 a. (4,0) b. (2,0) a. L(x,y) = Find the linearization L(x,y,z) of the function f(x,y,z) = 1x2 + y2 +z2 at the points (7,0,0), (3,4,0), and (4,4,7). The linearization of f(x,y,z) at (7,0,0) is L(x,y,z)= (Type an exact answer, using radicals as needed.)