Answer:
The digit 4 should be in the thousand position in the number sought;
Examples
9.30<u>4</u>,
9.00<u>4</u>
Step-by-step explanation:
Here, we are required to consider decimal places of numbers
The digit 4 in the number 3.8463 is in the hundredth position
That is 0.04
We are asked to look for the number with a digit 4 that has the same value as
the digit 4 in 3.8463
That is

Therefore, the digit 4 in the number sought should be in the thousandth position, that is 0.004
Example includes 9.304 or 9.004.
Answer:
We have been given a unit circle which is cut at k different points to produce k different arcs. Now we can see firstly that the sum of lengths of all k arks is equal to the circumference:

Now consider the largest arc to have length \small l . And we represent all the other arcs to be some constant times this length.
we get :

where C(i) is a constant coefficient obviously between 0 and 1.

All that I want to say by using this step is that after we choose the largest length (or any length for that matter) the other fractions appear according to the above summation constraint. [This step may even be avoided depending on how much precaution you wanna take when deriving a relation.]
So since there is no bias, and \small l may come out to be any value from [0 , 2π] with equal probability, the expected value is then defined as just the average value of all the samples.
We already know the sum so it is easy to compute the average :

There are 15 pencils altogether. Of these, 4 are green. Thus, P(green) = 4/15.
3+6
There are 3 red and 6 blue pencils. Thus, P(red or blue) = --------- = 3/5
15
Answer:
6 units
Step-by-step explanation:
count 6 units up