Multiply them back into each other... You would multiply your answer with the number you divided by (the number ouside the table if you used the table... ) and you should get the larger number you divided.
The temperature of the ice cream 2 hours after it was placed in the freezer is 37.40 °C
From Newton's law of cooling, we have that
![T_{(t)}= T_{s}+(T_{0} - T_{s})e^{kt}](https://tex.z-dn.net/?f=T_%7B%28t%29%7D%3D%20T_%7Bs%7D%2B%28T_%7B0%7D%20-%20T_%7Bs%7D%29e%5E%7Bkt%7D)
Where
![(t) = \ time](https://tex.z-dn.net/?f=%28t%29%20%3D%20%5C%20time)
![T_{(t)} = \ the \ temperature \ of \ the \ body \ at \ time \ (t)](https://tex.z-dn.net/?f=T_%7B%28t%29%7D%20%3D%20%5C%20the%20%5C%20temperature%20%5C%20of%20%5C%20the%20%5C%20body%20%5C%20at%20%5C%20time%20%5C%20%28t%29)
![T_{s} = Surrounding \ temperature](https://tex.z-dn.net/?f=T_%7Bs%7D%20%3D%20Surrounding%20%5C%20temperature)
![T_{0} = Initial \ temperature \ of \ the \ body](https://tex.z-dn.net/?f=T_%7B0%7D%20%3D%20Initial%20%5C%20temperature%20%5C%20of%20%5C%20the%20%5C%20body)
![k = constant](https://tex.z-dn.net/?f=k%20%3D%20constant)
From the question,
![T_{0} = 86 ^{o}C](https://tex.z-dn.net/?f=T_%7B0%7D%20%3D%2086%20%5E%7Bo%7DC)
![T_{s} = -20 ^{o}C](https://tex.z-dn.net/?f=T_%7Bs%7D%20%3D%20-20%20%5E%7Bo%7DC)
∴ ![T_{0} - T_{s} = 86^{o}C - -20^{o}C = 86^{o}C +20^{o}C](https://tex.z-dn.net/?f=T_%7B0%7D%20-%20T_%7Bs%7D%20%3D%2086%5E%7Bo%7DC%20-%20-20%5E%7Bo%7DC%20%3D%2086%5E%7Bo%7DC%20%2B20%5E%7Bo%7DC)
![T_{0} - T_{s} = 106^{o} C](https://tex.z-dn.net/?f=T_%7B0%7D%20-%20T_%7Bs%7D%20%3D%20106%5E%7Bo%7D%20C)
Therefore, the equation
becomes
![T_{(t)}=-20+106 e^{kt}](https://tex.z-dn.net/?f=T_%7B%28t%29%7D%3D-20%2B106%20e%5E%7Bkt%7D)
Also, from the question
After 1 hour, the temperature of the ice-cream base has decreased to 58°C.
That is,
At time
, ![T_{(t)} = 58^{o}C](https://tex.z-dn.net/?f=T_%7B%28t%29%7D%20%3D%2058%5E%7Bo%7DC)
Then, we can write that
![T_{(1)}=58 = -20+106 e^{k(1)}](https://tex.z-dn.net/?f=T_%7B%281%29%7D%3D58%20%3D%20-20%2B106%20e%5E%7Bk%281%29%7D)
Then, we get
![58 = -20+106 e^{k(1)}](https://tex.z-dn.net/?f=58%20%3D%20-20%2B106%20e%5E%7Bk%281%29%7D)
Now, solve for ![k](https://tex.z-dn.net/?f=k)
First collect like terms
![58 +20 = 106 e^{k}](https://tex.z-dn.net/?f=58%20%2B20%20%3D%20106%20e%5E%7Bk%7D)
![78 =106 e^{k}](https://tex.z-dn.net/?f=78%20%3D106%20e%5E%7Bk%7D)
Then,
![e^{k} = \frac{78}{106}](https://tex.z-dn.net/?f=e%5E%7Bk%7D%20%3D%20%5Cfrac%7B78%7D%7B106%7D)
![e^{k} = 0.735849](https://tex.z-dn.net/?f=e%5E%7Bk%7D%20%3D%200.735849)
Now, take the natural log of both sides
![ln(e^{k}) =ln( 0.735849)](https://tex.z-dn.net/?f=ln%28e%5E%7Bk%7D%29%20%3Dln%28%200.735849%29)
![k = -0.30673](https://tex.z-dn.net/?f=k%20%3D%20-0.30673)
This is the value of the constant ![k](https://tex.z-dn.net/?f=k)
Now, for the temperature of the ice cream 2 hours after it was placed in the freezer, that is, at ![t = 2 \ hours](https://tex.z-dn.net/?f=t%20%3D%202%20%5C%20hours)
From
![T_{(t)}=-20+106 e^{kt}](https://tex.z-dn.net/?f=T_%7B%28t%29%7D%3D-20%2B106%20e%5E%7Bkt%7D)
Then
![T_{(2)}=-20+106 e^{(-0.30673 \times 2)}](https://tex.z-dn.net/?f=T_%7B%282%29%7D%3D-20%2B106%20e%5E%7B%28-0.30673%20%5Ctimes%202%29%7D)
![T_{(2)}=-20+106 e^{-0.61346}](https://tex.z-dn.net/?f=T_%7B%282%29%7D%3D-20%2B106%20e%5E%7B-0.61346%7D)
![T_{(2)}=-20+106\times 0.5414741237](https://tex.z-dn.net/?f=T_%7B%282%29%7D%3D-20%2B106%5Ctimes%200.5414741237)
![T_{(2)}=-20+57.396257](https://tex.z-dn.net/?f=T_%7B%282%29%7D%3D-20%2B57.396257)
![T_{(2)}=37.396257 \ ^{o}C](https://tex.z-dn.net/?f=T_%7B%282%29%7D%3D37.396257%20%5C%20%5E%7Bo%7DC)
![T_{(2)} \approxeq 37.40 \ ^{o}C](https://tex.z-dn.net/?f=T_%7B%282%29%7D%20%5Capproxeq%20%2037.40%20%5C%20%5E%7Bo%7DC)
Hence, the temperature of the ice cream 2 hours after it was placed in the freezer is 37.40 °C
Learn more here: brainly.com/question/11689670
2 lb in each package
There are 3 types of nuts they all have 9 1/3 pounds in them. multiply 3 by 9 /13 to find out how many pounds of nuts there is. 3×9 1/3 That is 28 pounds. Now divide the 28 pounds of nuts into the 14 packages. 28 ÷ 14 There is 2 pounds of nuts in each package.