Very, very rare. Uranium used in power plants is typically only 3% U-235 (the explosive stuff), while bomb-grade uranium is nearly pure U-235. Simply, the concentration of U-235 in reactor-grade uranium is too small to start a chain reaction and detonate like a bomb.
The options for this question are:
- Requires genetic variation
- Results in descent with modification
- Involves differential reproductive success
- All of the above
Answer:
<u><em>The correct option is d) All of the above</em></u>
Explanation:
The theory of natural selection explains that genetic variations occur in organisms of a species. Those organisms which are better adapted to live in an environment are able to survive and pass on their characteristics to their offsprings, hence descent with modification. Through this phenomenon, evolution takes place with the passage of time. Natural selection favours survival of the fittest. Hence, all of the above statements are true.
I think the answer is water
Answer:
The epidemic caused us to quarantine if we got infected to protect those around us.
Explanation:
Answer:
In human vision, the cone visual opsins are grouped into four photoreceptor protein families LWS, SWS1, SWS2, RH2
.
- SWS1: produce pigments sensitive to very short wavelengths, UV-violet, 360-450 nm.
- SWS2: produce pigments sensitive to short wavelengths, blue, 450-495 nm
- RH2: produce pigments sensitive to medium wavelengths, green, 495-560 nm
- LWS: produce pigments sensitive to long wavelengths, yellow-red, 560-770nm.
Explanation:
Photoreceptor proteins are light-sensitive proteins that mediate light-induced signal transduction, thus they are involved in the sensing and response to light in a variety of organisms.
The photoreceptor proteins are classified based on the chemical structure of the chromophores involved, the light absorption and on the protein sequence.
This photoreceptor proteins are located at the cone photoreceptor cells and are responsible of photopic vision.
For scotopic vision, rhodopsin is responsible. Rhodopsins are the visual pigments (visual purple) of the rod photoreceptor cell in the retina. They are responsible of human vision in dim light, as it contains a sensory protein that converts light into an electric signal.