Since the ratio of red drops to yellow drops is 55:88 and you have 1515 red drops, the yellow drops needed is given as
If 55=1515
88=?
88/55*1515=2424
therefore 2424 drops of yellow will be needed to make a shade of orange
Y = 3x^2 - 3x - 6 {the x^2 (x squared) makes it a quadratic formula, and I'm assuming this is what you meant...}
This is derived from:
y = ax^2 + bx + c
So, by using the 'sum and product' rule:
a × c = 3 × (-6) = -18
b = -3
Now, we find the 'sum' and the 'product' of these two numbers, where b is the 'sum' and a × c is the 'product':
The two numbers are: -6 and 3
Proof:
-6 × 3 = -18 {product}
-6 + 3 = -3 {sum}
Now, since a > 1, we divide a from the results
-6/a = -6/3 = -2
3/a = 3/3 = 1
We then implement these numbers into our equation:
(x - 2) × (x + 1) = 0 {derived from 3x^2 - 3x - 6 = 0}
To find x, we make x the subject of 0:
x - 2 = 0
OR
x + 1 = 0
Therefore:
x = 2
OR
x = -1
So the x-intercepts of the quadratic formula (or solutions to equation 3x^2 - 3x -6 = 0, to put it into your words) are 2 and -1.
We can check this by substituting the values for x:
Let's start with x = 2:
y = 3(2)^2 - 3(2) - 6
= 3(4) - 6 - 6
= 12 - 6 - 6
= 0 {so when x = 2, y = 0, which is correct}
For when x = -1:
y = 3(-1)^2 - 3(-1) - 6
= 3(1) + 3 - 6
= 3 + 3 - 6
= 0 {so when x = -1, y = 0, which is correct}
Answer:
is a root.
is correct.
Step-by-step explanation:
As
is a factor of 
then it must be
is a root.
Therefore,
is correct.
Let
x---------> <span> josh"age
y--------> </span><span>autumn' age
we know that
x+y=88--------> y=88-x---------> equation 1
(x-9)=4*(y-9)--------> equation 2
substitute equation 1 in equation 2
(x-9)=4*(88-x-9)
x-9=4*(79-x)
x-9=316-4x
x+4x=316+9
5x=325
x=65
the answer is
</span>josh"age is 65 years
Yes it is a function because there are no repeating x or y values