Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon:
Answer: Angle 59 degree
Explanation: Given that the
n1 = 1.0
n2 = 1.5
Øi = 35 degree
From Snell law, which says that
n1/n2 = sinØ1/ sinØ2
Substitute all the parameters into the formula
1/1.5 = sin 35/sinØ2
Cross multiply
Sin Ø2 = 1.5 sin35
SinØ2 = 1.5 × 0.573 = 0.860
Ø2 = sin^-1(0.860)
Ø2 = 59.36 degree
Ø2 = 59 degree ( approximately)
It has angle 59 degree when passing from air to glass
The velocity of the ball is 12.5 m/s
Explanation:
The velocity of the ball is given by the ratio between the distance covered by the ball and the time taken:

First, we calculate the distance covered. We know that the radius of the circle is
r = 0.450 m
And the length of the circumference is

The ball makes 25.0 revolutions, so a total distance of

In a time of
t = 9.37 s
So, its velocity is

Learn more about velocity here:
brainly.com/question/5248528
#LearnwithBrainly
They become old and explode.