Normally, when something gets colder, its electrical resistance gets smaller. This is true of component-A in the drawing ... a simple resistor.
The component labeled 'B' has a strange and unusual symbol, and it's not a simple resistor. It's a "thermistor". The word "thermal" always has something to do with heat, and "thermistor" comes from "thermal resistor. These things can be manufactured either way ... using different materials, a thermistor can be manufactured so that its resistance goes UP, or goes DOWN, or doesn'tchange when it gets colder. I'm pretty sure that's what's going on here.
When this circuit gets colder, resistance-A gets smaller, but resistance-B either gets bigger OR doesn't change. Either way, the voltage across B increases. Since the LED is connected directly across B, the current through it depends on that voltage, so the LED gets more current, and becomes brighter, when A and B both get colder.
This circuit could actually be a very useful device. If you took out the LED and put a voltmeter in its place, then the reading on the voltmeter would tell you the temperature of wherever you put the two components A and B.
To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
Answer:
1. 1. A quantity is completely described by magnitude alone. A quantity Is completely described by a magnitude with a direction.
[a]. scalar, vector
b. vector, scalar
2.2. Speed is a velocity is a quantity and quantity.
a. scalar, vector
[b]. vector, scalar
Answer:corrosion (i believe)
Explanation:
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.