Answer:
See explanation
Step-by-step explanation:
16. Two parallel lines are cut by transversal. Angles with measures
and
are alternate exterior angles. By alternate exterior angles, the measures of alternate exterior angles are the same:

Then

17. Two parallel lines are cut by transversal. Angles with measures
and
are alternate interior angles. By alternate interior angles, the measures of alternate interior angles are the same:

Then

18. Two parallel lines are cut by transversal. Angles with measures
and
are alternate exterior angles. By alternate interior angles, the measures of alternate exterior angles are the same:

Then

19. The diagram shows two complementary angles with measures
and
. The measures of complementary angles add up to
then

Hence,

Check:

20. Angles
and
are vertical angles. By vertical angles theorem, vertical angles are congruent, so

Hence,

21.
and
are supplementary. The measures of supplementary angles add up to
so

Therefore,

Check the picture below.
so let's find the lengths of those two sides in red, since are the length and width of the rectangle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{6})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[-3-(-6)]^2+[6-3]^2}\implies d=\sqrt{(-3+6)^2+(6-3)^2} \\\\\\ d=\sqrt{9+9}\implies \boxed{d=\sqrt{18}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-3%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-3%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286-3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B9%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B18%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1})~\hfill d=\sqrt{[-2-(-6)]^2+[-1-3]^2} \\\\\\ d=\sqrt{(-2+6)^2+(-1-3)^2}\implies d=\sqrt{16+16}\implies \boxed{d=\sqrt{32}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{(\sqrt{18})(\sqrt{32})}\implies \sqrt{18\cdot 32}\implies \sqrt{576}\implies 24](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29~%5Chfill%20d%3D%5Csqrt%7B%5B-2-%28-6%29%5D%5E2%2B%5B-1-3%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%28-2%2B6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B16%2B16%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B32%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7B%28%5Csqrt%7B18%7D%29%28%5Csqrt%7B32%7D%29%7D%5Cimplies%20%5Csqrt%7B18%5Ccdot%2032%7D%5Cimplies%20%5Csqrt%7B576%7D%5Cimplies%2024)
The last choice: Running up a hill, then walking up a hill, turning around and running down the hill, then walking down the hill
Answer:
The answer to your question is: P = 17 years
Step-by-step explanation:
Data
Parrot = 11 years older than the cat
C = cat age
P = parrot age
P = ? when C = 6
Process
P = C + 11
P = 6 + 11
P = 17 years
Domain is: {10,26,40,56} and it is not a function