Answer:
it depends on the shelf
Step-by-step explanation:
Answer:
<h2>3(cos 336 + i sin 336)</h2>
Step-by-step explanation:
Fifth root of 243 = 3,
Suppose r( cos Ф + i sinФ) is the fifth root of 243(cos 240 + i sin 240),
then r^5( cos Ф + i sin Ф )^5 = 243(cos 240 + i sin 240).
Equating equal parts and using de Moivre's theorem:
r^5 =243 and cos 5Ф + i sin 5Ф = cos 240 + i sin 240
r = 3 and 5Ф = 240 +360p so Ф = 48 + 72p
So Ф = 48, 120, 192, 264, 336 for 48 ≤ Ф < 360
So there are 5 distinct solutions given by:
3(cos 48 + i sin 48),
3(cos 120 + i sin 120),
3(cos 192 + i sin 192),
3(cos 264 + i sin 264),
3(cos 336 + i sin 336)
Answer:
Circumcenter Incenter Centroid
Formed by intersection of Perp. Bisectors Angle bisectors Medians
Type of circle Circumscribed Inscribed No circle
Special property Equidistant from Equidistant from Center of mass
vertices Sides
Answer:
k
Step-by-step explanation: