we know that
The measure of the interior angle is the half-sum of the arcs comprising it and its opposite.
so
<u>Find the measure of the angle LAM</u>
m∠LAM is equal to
![\frac{1}{2}*[arc\ KJ+arc\ LM]= \frac{1}{2}*[170+80]\\\\=125\ degrees](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%2A%5Barc%5C%20KJ%2Barc%5C%20LM%5D%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%5B170%2B80%5D%5C%5C%5C%5C%3D125%5C%20degrees)
<u>Find the measure of the angle MAJ</u>
we know that
m∠LAM+m∠MAJ=
° ------> by supplementary angles
m∠MAJ=
m∠MAJ=
°
therefore
<u>the answer is</u>
The measure of the angle MAJ is 
The pairs that are equivalent to each other are 40/1000 and 40%, 6/5 and 120%, 1/8 and 12.5% . They are the correct answers because if we divide for example 6/5 , we would get 1.2 and to turn a decimal into a percent we have to move the decimal point 2 times to the right meaning that the percentage would be 120% and you just do that for all! I hope this helped :)!!
I might be wrong but don’t you need two equations to do the elimination process?
Answer:
i think it is c
Step-by-step explanation:
not 100% sure tho
<span>0.05 arc-second = 1 degree/72000 = (pi
radians)/(180*72000) = 2.424 x 10^(-7) radians</span>
<span>The distance is roughly: </span>
<span>R*(theta) = (600 light-years)*2.424 x 10^(-7) = 0.00014544 light-years = 1.275
light-hours = (3600 seconds)*(3 x 10^8 m/s)*(1.275) = 1.38 x 10^12 meters.</span>